Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

From chessboard tweed to chessboard nanowire structure during pseudospinodal decomposition


Microstructure evolution in complex nonlinear systems is of great interest from both scientific and engineering viewpoints. Here, we consider an important case of such an evolution, a coherent decomposition of a homogeneous parent phase involving the symmetry-lifting crystal lattice rearrangement of the product phase. It is shown that under certain conditions the transformation develops as a pseudospinodal decomposition, which is defined as a transformation with continuous changes of the compositions of both decomposed phases towards their equilibrium values. The pseudospinodal decomposition starts by the formation of a nanodomain precursor state with a so-called tweed structure. The three-dimensional modelling demonstrates that this tweed structure has an underlying chessboard feature, and this arrangement is a template for the further microstructure development that eventually produces a coherent two-phase chessboard nanowire pattern. The proposed theory and modelling describe the mechanism of the pseudospinodal decomposition and predict all observed three-dimensional features of the chessboard structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture of 3D chessboard nanostructures.
Figure 2
Figure 3: Histograms of the distribution of volume fractions of finite elements with different compositions, c, at different times.
Figure 4: Simulated 3D microstructure development.

Similar content being viewed by others


  1. Leroux, C., Loiseau, A., Broddin, G. & Van Tendeloo, G. Electron microscopy study of the coherent two-phase mixtures L10+L12 in Co–Pt alloys. Phil. Mag. B 64, 57–82 (1991).

    CAS  Google Scholar 

  2. Udoh, K. I. et al. Structural aspects of AuCu I or AuCu II and a cuboidal block configuration of fcc disordered phase in AuCu-Pt and AuCu-Ag pseudobinary alloys. Mater. Sci. Eng. A 203, 154–164 (1995).

    Article  Google Scholar 

  3. Bendersky, L. A. & Boettinger, W. J. Phase transformations in the (Ti,Nb)3Al section of the Ti-Al-Nb system II. experimental TEM study of microstructures. Acta Metall. Mater. 42, 2337–2352 (1994).

    Article  CAS  Google Scholar 

  4. Suzuki, A. & Takeyama, M. Formation and morphology of Kurnakov type D022 compound in disordered face-centered cubic γ-(Ni,Fe) matrix alloys. J. Mater. Res. 21, 21–26 (2006).

    Article  CAS  Google Scholar 

  5. Van Tendeloo, G. & Amelincks, S. Long-period antiphase boundary structures in the ordered alloy Au4Zn II. growth mechanism of the LPAPB structure. Phys. Status Solidi A 50, 53–66 (1978).

    Article  CAS  Google Scholar 

  6. Yeo, S. et al. Solid state self-assembly of nanocheckerboards. Appl. Phys. Lett. 89, 233120 (2006).

    Article  Google Scholar 

  7. Zhang, C. L. et al. Coercivity and nanostructure in magnetic spinel Mg(Mn,Fe)2O4 . Appl. Phys. Lett. 90, 133123 (2007).

    Article  Google Scholar 

  8. Zhang, C. L. et al. Magnetic nanocheckerboards with tunable sizes in the Mn-doped CoFe2O4 spinel. Appl. Phys. Lett. 91, 233110 (2007).

    Article  Google Scholar 

  9. Guiton, B. S. & Davies, P. K. Nano-chessboard superlattices formed by spontaneous phase separation in oxides. Nature Mater. 6, 586–591 (2007).

    Article  CAS  Google Scholar 

  10. Park, S. et al. Highly aligned epitaxial nanorods with a checkerboard pattern in oxide films. Nano Lett. 8, 720–724 (2008).

    Article  CAS  Google Scholar 

  11. Le Bouar, Y., Loiseau, A. & Khachaturyan, A. G. Origin of chessboard-like structures in decomposing alloys: Theoretical model and computer simulation. Acta Mater. 46, 2777–2788 (1998).

    Article  CAS  Google Scholar 

  12. Khachaturyan, A. G., Lindsey, T. F. & Morris, J. W. Theoretical investigation of the precipitation of δ in Al-Li. Metall. Mat. Trans. A. 19, 249–258 (1988).

    Article  Google Scholar 

  13. Soffa, W. A. & Laughlin, D. E. Decomposition and ordering processes involving thermodynamically first-order order to disorder transformations. Acta Metall. 37, 3019–3028 (1989).

    Article  CAS  Google Scholar 

  14. Wang, Y. Z., Wang, H. Y., Chen, L. Q. & Khachaturyan, A. G. Shape evolution of a coherent tetragonal precipitate in partially stabilized cubic ZrO2: A computer simulation. J. Am. Ceram. Soc. 76, 3029–3033 (1993).

    Article  CAS  Google Scholar 

  15. Wang, Y. Z., Wang, H. Y., Chen, L. Q. & Khachaturyan, A. G. Microstructural development of coherent tetragonal precipitates in Magnesium-partially-stabilized Zirconia: A computer simulation. J. Am. Ceram. Soc. 78, 657–661 (1995).

    Article  CAS  Google Scholar 

  16. Wang, Y. Z. & Khachaturyan, A. G. Three-dimensional field model and computer modeling of martensitic transformations. Acta Mater. 45, 759–773 (1997).

    Article  CAS  Google Scholar 

  17. Ni, Y., Jin, Y. M. & Khachaturyan, A. G. The transformation sequences in the cubic→tetragonal decomposition. Acta Mater. 55, 4903–4914 (2007).

    Article  CAS  Google Scholar 

  18. Artemev, A., Jin, Y. M. & Khachaturyan, A. G. Three-dimensional phase field model of proper martensitic transformation. Acta Mater. 49, 1165–1177 (2001).

    Article  CAS  Google Scholar 

  19. Tanner, L. E. Diffraction contrast from elastic shear strains due to coherent phases. Phil. Mag. 14, 111–130 (1966).

    Article  CAS  Google Scholar 

  20. Laughlin, D. E., Sinclair, R. & Tanner, L. Comments on the early stages of the transformation in dilute alloys of titanium in Nickel. Scr. Metall. 14, 373–376 (1980).

    Article  CAS  Google Scholar 

  21. Robertson, I. M. & Wayman, C. M. Tweed microstructures I. characterization in β-NiAl. Phil. Mag. A 48, 421–442 (1983).

    Article  CAS  Google Scholar 

Download references


The authors gratefully acknowledge the support from NSF DMR under the grant NSF DMR-0704045. The simulations were performed on the DataStar in the San Diego Supercomputer Centre.

Author information

Authors and Affiliations



Y.N. carried out most of the analysis and simulation in the research. A.G.K. planned the research and supervized it. The article was written by A.G.K. and Y.N.

Corresponding author

Correspondence to Armen G. Khachaturyan.

Supplementary information

Supplementary Information

Supplementary Information (PDF 600 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Y., Khachaturyan, A. From chessboard tweed to chessboard nanowire structure during pseudospinodal decomposition. Nature Mater 8, 410–414 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing