Abstract
Despite the amount of experimental and theoretical work on doping-induced superconductivity in covalent semiconductors based on group IV elements over the past four years, many open questions and puzzling results remain to be clarified. The nature of the coupling (whether mediated by electronic correlation, phonons or both), the relationship between the doping concentration and the critical temperature (Tc), which affects the prospects for higher transition temperatures, and the influence of disorder and dopant homogeneity are debated issues that will determine the future of the field. Here, we present recent achievements and predictions, with a focus on boron-doped diamond and silicon. We also suggest that innovative superconducting devices, combining specific properties of diamond or silicon with the maturity of semiconductor-based technologies, will soon be developed.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Valence-skipping and quasi-two-dimensionality of superconductivity in a van der Waals insulator
Nature Communications Open Access 14 November 2022
-
InN superconducting phase transition
Scientific Reports Open Access 23 August 2019
-
Phonon-mediated high-T c superconductivity in hole-doped diamond-like crystalline hydrocarbon
Scientific Reports Open Access 03 May 2017
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).
Crespi, V. H. Clathrates join the covalent club. Nature Mater. 2, 650–651 (2003).
Ekimov, E. A. et al. Superconductivity in diamond. Nature 428, 542–545 (2004).
Bustarret, E. et al. Superconductivity in doped cubic silicon. Nature 444, 465–468 (2006).
Ren, Z.-A. et al. Superconductivity in boron-doped SiC. J. Phys. Soc. Jap. 76, 103710 (2007).
Kriener, M. et al. Specifc heat and electronic states of superconducting boron-doped silicon carbide. Phys. Rev. B 78, 024517 (2008).
Kawaji, H., Horie, H.-O., Yamanaka, S. & Ishikawa, M. Superconductivity in the silicon clathrate compound (Na, Ba)xSi46 . Phys. Rev. Lett. 74, 1427–1429 (1995).
Tanigaki, K. et al. Mechanism of superconductivity in the polyhedral-network compound Ba8Si46. Nature Mater. 2, 653–655 (2003).
Hebard, A. F. et al. Superconductivity at 18 K in potassium-doped C60 . Nature 350, 600–601 (1991).
Varma, C. M., Zaanen, J. & Raghavachari, K. Superconductivity in the fullerenes. Science 254, 989–992 (1991).
Weller, T. E., Ellerby, M., Saxena, S. S., Smith, R. P. & Skipper, N. T. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca. Nature Phys. 1, 39–41 (2005).
Emery, N. et al. Superconductivity of bulk CaC6 . Phys. Rev. Lett. 95, 087003 (2005).
Carbotte, J. P. Properties of boson exchange superconductors. Rev. Mod. Phys. 62, 1027–1157 (1990).
Pickett, W. E. The next breakthrough in phonon-mediated superconductivity. Physica C 468, 126–135 (2008).
Moussa, J. E. & Cohen, M. L. Constraints on Tc for superconductivity in heavily boron-doped diamond. Phys. Rev. B 77, 064518 (2008).
Calandra, M. & Mauri, F. High-Tc superconductivity in superhard diamondlike BC5 . Phys. Rev. Lett. 101, 016401 (2008).
Cava, R. J. Super silicon. Nature 444, 427–428 (2006).
Cohen, M. L. Superconductivity in many-valley semiconductors and in semimetals. Phys. Rev. 134, A511–A521 (1964).
Cohen, M. L. The existence of a superconducting state in semiconductors. Rev. Mod. Phys. 36, 240–243 (1964).
Schooley, J. F., Hosler, W. R. & Cohen, M. L. Superconductivity in semiconducting SrTiO3 . Phys. Rev. Lett. 12, 474–475 (1964).
Schooley, J. F. et al. Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO3 . Phys. Rev. Lett. 14, 305–307 (1965).
Hein, R. A., Gibson, J. W., Mazelsky, R., Miller, R. C. & Hulm, J. K. Superconductivity in germanium telluride. Phys. Rev. Lett. 12, 320–322 (1964).
Gunnarsson, O. Superconductivity in fullerides. Rev. Mod. Phys. 69, 575–606 (1997).
Iwasa, T. & Takenobu, T. Superconductivity, Mott–Hubbard states, and molecular orbital order in intercalated fullerides. J. Phys. Cond. Mat. 15, R495–R519 (2003).
Kasper, J. S., Hagenmuller, P., Pouchard, M. & Cros, C. Clathrate structure of silicon Na8Si46 and NaxSi136 (x < 11). Science 150, 1713–1714 (1965).
Connétable, D. et al. Superconductivity in doped sp3 semiconductors: The case of the clathrates. Phys. Rev. Lett. 91, 247001 (2003).
Solozhenko, V. L., Dubrovinskaia, N. A. & Dubrovinsky, L. S. Synthesis of bulk superhard semiconducting B–C material. Appl. Phys. Lett. 85, 1508–1510 (2004).
Ekimov, E. A. et al. Diamond crystallization in the system B4C.-C. Inorg. Mater. 40, 932–936 (2004).
Dubitskiy, G. A. et al. Superhard superconducting materials based on diamond and cubic boron nitride. JETP Lett. 81, 260–263 (2005).
Dubrovinskaia, N. et al. Large carbon-isotope shift of Tc in boron-doped diamond. Appl. Phys. Lett. 92, 132506 (2008).
Takano, Y. et al. Superconductivity in diamond thin films well above liquid helium temperature. Appl. Phys. Lett. 85, 2851–2853 (2004).
Bustarret, E. et al. Dependence of the superconducting transition temperature on the doping level in single-crystalline diamond films. Phys. Rev. Lett. 93, 237005 (2004).
Kato, Y. et al. Dopant-site effect in superconducting diamond (111) studied by atomic stereophotography. Appl. Phys. Lett. 91, 251914 (2007).
Mukuda, H. et al. Microscopic evidence for evolution of superconductivity by effective carrier doping in boron-doped diamond: 11B-NMR study. Phys. Rev. B 75, 033301 (2007).
Nesladek, M. et al. Superconductive B-doped nanocrystalline diamond thin films: Electrical transport and Raman spectra. Appl. Phys. Lett. 88, 232111 (2006).
Ishizaka, K. et al. Observation of a superconducting gap in boron-doped diamond by laser-excited photoemission spectroscopy. Phys. Rev. Lett. 98, 047003 (2007).
Cammilleri, D. et al. Highly doped Si and Ge formed by GILD (gas immersion laser doping); from GILD to superconducting silicon. Thin Solid Films 517, 75–79 (2008).
Kortus, J. Where are the electrons? Nature Mater. 4, 879–880 (2005).
Baskaran, G. Strongly correlated impurity band superconductivity in diamond: X-ray spectroscopic evidence. Sci. Technol. Adv. Mater. 7, S49–S53 (2006).
Capone, M., Fabrizio, M., Castellani, C. & Tosatti, E. Strongly correlated superconductivity. Science 296, 2364–2366 (2002).
Han, J. E., Gunnarsson, O. & Crespi, V. H. Strong superconductivity with local Jahn–Teller phonons in C60 solids. Phys. Rev. Lett. 90, 167006 (2003).
Boeri, L., Kortus, J. & Andersen, O. K. Three-dimensional MgB2-type superconductivity in hole-doped diamond. Phys. Rev. Lett. 93, 237002 (2004).
Lee, K. W. & Pickett, W. E. Superconductivity in boron-doped diamond. Phys. Rev. Lett. 93, 237003 (2004).
Ma, Y. et al. First-principles study of electron–phonon coupling in hole- and electron-doped diamonds in the virtual crystal approximation. Phys. Rev. B 72, 014306 (2005).
Blase, X., Adessi, Ch. & Connétable, D. Role of the dopant in the superconductivity of diamond. Phys. Rev. Lett. 93, 237004 (2004).
Xiang, H. J., Li, Z. Y., Yang, J. L., Hou, J. G. & Zhu, Q. S. Electron–phonon coupling in a boron-doped diamond superconductor. Phys. Rev. B 70, 212504 (2004).
Giustino, F., Yates, J. R., Souza, I., Cohen, M. L. & Louie, S. G. Electron–phonon interaction via electronic and lattice Wannier functions: Superconductivity in boron-doped diamond reexamined. Phys. Rev. Lett. 98, 047005 (2007).
Bourgeois, E. & Blase, X. Superconductivity in doped cubic silicon: An ab initio study. Appl. Phys. Lett. 90, 142511 (2007).
Margine, E. R. & Blase, X. Ab initio study of electron–phonon coupling in boron-doped SiC. Appl. Phys. Lett. 93, 192510 (2008).
Lee, K. W. & Pickett, W. E. Boron spectral density and disorder broadening in B-doped diamond. Phys. Rev. B 73, 075105 (2006).
Yokoya, T. et al. Origin of the metallic properties of heavily boron-doped superconducting diamond. Nature 438, 647–50 (2005).
Nakamura, J. et al. Holes in the valence band of superconducting boron-doped diamond film studied by soft X-ray absorption and emission spectroscopy. J. Phys. Soc. Jap. 77, 054711 (2008).
Migdal, A. B. Interactions between electrons and the lattice vibrations in a normal metal. Zh. Eksp. Teor. Fiz. 34, 1438–1446 (1958).
Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957); Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).
Sacépé, B. et al. Tunneling spectroscopy and vortex imaging in boron-doped diamond. Phys. Rev. Lett. 96, 097006 (2006).
Ekimov, E. A. et al. Structure and superconductivity of isotope-enriched boron-doped diamond. Sci. Technol. Adv. Mater. 9, 044210 (2008).
Carbotte, J. P., Greeson, M. & Perez-Gonzalez, A. Modification of the isotope effect due to pair breaking. Phys. Rev. Lett. 66, 1789–1792 (1991).
Ishizaka, K. et al. Temperature-dependent localized excitations of doped carriers in superconducting diamond. Phys. Rev. Lett. 100, 166402 (2008).
Hoesch, M. et al. Phonon softening in superconducting diamond. Phys. Rev. B 75, 140508 (2007).
Ortolani, M. et al. Low-energy electrodynamics of superconducting diamond. Phys. Rev. Lett. 97, 097002 (2006).
Achatz, P. Metal-Insulator Transition and Superconductivity in Heavily Boron-Doped Diamond and Related Materials. PhD thesis, Univ. Joseph Fourier, Grenoble (2008).
Calandra, M., Vast, N. & Mauri, F. Superconductivity from doping boron icosahedra. Phys. Rev. B 69, 224505 (2004).
Solozhenko, V. L. et al. Ultimate metastable solubility of boron in diamond: Synthesis of superhard diamondlike BC5 . Phys. Rev. Lett. 102, 015506 (2009).
Zinin, P. V. et al. Pressure- and temperature-induced phase transition in the B-C system. J. Appl. Phys. 100, 013516 (2006).
Goss, J. P. & Briddon, P. R. Theory of boron aggregates in diamond: First-principles calculations. Phys. Rev. B 73, 085204 (2006).
Bourgeois, E., Bustarret, E., Achatz, P., Omnès, F. & Blase, X. Impurity dimers in superconducting B-doped diamond: Experiment and first-principles calculations. Phys. Rev. B 74, 094509 (2006).
Dubrovinskaia, N. et al. An insight into what superconducts in polycrystalline boron-doped diamonds based on investigations of microstructure. Proc. Natl Acad. Sci. USA 105, 11619–11622 (2008).
Schluter, M., Lannoo, M., Needels, M. & Baraff, G. A. Electron–phonon coupling and superconductivity in alkali-intercalated C60 solid. Phys. Rev. Lett. 68, 526–529 (1992).
Côté, M., Grossman, J. C., Cohen, M. L. & Louie, S. G. Electron–phonon interactions in solid C36 . Phys. Rev. Lett. 81, 697–700 (1998).
Breda, N. et al. C28: A possible room temperature organic superconductor. Phys. Rev. B 62, 130–133 (2000).
Benedict, L. X., Crespi, V. H., Louie, S. G. & Cohen, M. L. Static conductivity and superconductivity of carbon nanotubes: Relations between tubes and sheets. Phys. Rev. B 52, 14935–14940 (1995).
Kociak, M. et al. Superconductivity in ropes of single-walled carbon nanotubes. Phys. Rev. Lett. 86, 2416–2419 (2001).
Tang, Z. K. et al. Superconductivity in 4 angstrom single-walled carbon nanotubes. Science 292, 2462–2465 (2001).
Nunez-Regueiro, M., Marques, L., Hodeau, J. L., Bethoux, O. & Perroux, M. Polymerized fullerite structures. Phys. Rev. Lett. 74, 278–281 (1995).
Blank, V. et al. V. Ultrahard and superhard phases of fullerite C-60: Comparison with diamond on hardness and wear. Diam. Related Mater. 7, 427–431 (1998).
Blase, X., Gillet, P., San Miguel, A. & Mélinon, P. Exceptional ideal strength of carbon clathrates. Phys. Rev. Lett. 92, 215505 (2004).
Devos, A. & Lannoo, M. Electron–phonon coupling for aromatic molecular crystals: Possible consequences for their superconductivity. Phys. Rev. B 58, 8236–8239 (1998).
Park, C.-H., Giustino, F., Cohen, M. L. & Louie, S. G. Velocity renormalization and carrier lifetime in graphene from the electron–phonon interaction. Phys. Rev. Lett. 99, 086804 (2007).
Calandra, M. & Mauri, F. Electron–phonon coupling and electron self-energy in electron-doped graphene: Calculation of angular resolved photoemission spectra. Phys. Rev. B 76, 205411 (2007).
Mélinon, P., Kéghélian, P., Blase, X., Le Brusc, J. & Perez, A. Electronic signature of the pentagonal rings in silicon clathrate phases: Comparison with cluster-assembled films. Phys. Rev. B 58, 12590–12593 (1998).
Zipoli, F., Bernasconi, M. & Benedek, G. Electron–phonon coupling in halogen-doped carbon clathrates from first principles. Phys. Rev. B 74, 205408 (2006).
Comeau, M., Leleyter, M., Leclercq, J. & Pascoli, G. Electronic structures and stabilities of MpCn microclusters. II. BpCn (n < 6, p = 1, 3). AIP Conf. Proc. 312, 605–611 (1994).
Hach, C. T., Jones, L. E., Crossland, C. & Thrower, P. A. An investigation of vapour deposited boron-rich carbon: A novel graphite-like material. Part I. The structure of BCx/C6B thin films. Carbon 37, 221–230 (1999).
Liu, A. Y. & Mazin, I. I. Combining the advantages of superconducting MgB2 and CaC6 in one material: Suggestions from first-principles calculations. Phys. Rev. B 75, 064510 (2007).
Calandra, M., Kolmogorov, A. N. & Curtarolo, S. Search for high Tc in layered structures: The case of LiB. Phys. Rev. B 75, 144506 (2007).
Ribeiro, F. J. & Cohen, M. L. Possible superconductivity in hole-doped BC3 . Phys. Rev. B 69, 212507 (2004).
Rosner, H., Kitaigorodsky, A. & Pickett, W. E. Prediction of high Tc superconductivity in hole-doped LiBC. Phys. Rev. Lett. 88, 127001 (2002).
Moussa, J. E., Noffsinger, J. & Cohen, M. L. Possible thermodynamic stability and superconductivity of antifluorite Be2BxC1-x . Phys. Rev. B 78, 104506 (2008).
Schäpers, T. Superconductor/Semiconductor Junctions (Springer, 2001).
Doh, Y.-J. et al. Tunable supercurrent through semiconductor nanowires. Science 309, 272–275 (2005).
Takayanagi, H. & Kawakami, T. Superconducting proximity effect in the native inversion layer on InAs. Phys. Rev. Lett. 54, 2449–2452 (1985).
Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).
Naik, A. et al. Cooling a nanomechanical resonator with quantum back-action. Nature 443, 193–196 (2006).
Gaidarzhy, A., Imboden, M., Mohanty, P., Rankin, J. & Sheldon, B. W. High quality factor gigahertz frequencies in nanomechanical diamond resonators. Appl. Phys. Lett. 91, 203503 (2007).
Lüders, M. et al. Ab initio theory of superconductivity. I. Density functional formalism and approximate functionals. Phys Rev. B 72, 024545 (2005).
Marques, M. A. L. et al. Ab initio theory of superconductivity. II. Application to elemental metals. Phys. Rev. B 72, 024546 (2005).
Shirakawa, T., Horiuchi, S., Ohta, Y. & H. Fukuyama, H. Theoretical study on superconductivity in boron-doped diamond. J. Phys. Soc. Jap. 76, 014711 (2007).
Yanase, Y. & Yorozu, N. Localization and superconductivity in doped semiconductors. Preprint at <http://arxiv.org/abs/0810.2915> (2008).
Klein, T. et al. Metal–insulator transition and superconductivity in boron-doped diamond. Phys. Rev. B 75, 165313 (2007).
Feigel'man, M. V., Ioffe, L. B., Kravtsov, V. E. & Yuzbashyan, E. A. Eigenfunction fractality and pseudogap state near the superconductor–insulator transition. Phys. Rev. Lett. 98, 027001 (2007).
Achatz, P. et al. Doping-induced metal–insulator transition in aluminum-doped 4H silicon carbide. Appl. Phys. Lett. 92, 072103 (2008).
Mott, N. F. Metal–Insulator Transitions (Taylor & Francis, 1974).
Persson, C. & Ferreira da Silva, A. in Optoelectronic Devices: III-Nitrides (eds Razeghi, M. & Henini, M.) Ch. 17, 479–559 (Elsevier, 2004).
Acknowledgements
This work was partially funded by the French CNRS, CEA and National Agency for Research (ANR) under contracts ANR-05-BLAN-0282 and ANR-08-BLAN-0170.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Blase, X., Bustarret, E., Chapelier, C. et al. Superconducting group-IV semiconductors. Nature Mater 8, 375–382 (2009). https://doi.org/10.1038/nmat2425
Issue Date:
DOI: https://doi.org/10.1038/nmat2425
This article is cited by
-
Valence-skipping and quasi-two-dimensionality of superconductivity in a van der Waals insulator
Nature Communications (2022)
-
InN superconducting phase transition
Scientific Reports (2019)
-
Phonon-mediated high-T c superconductivity in hole-doped diamond-like crystalline hydrocarbon
Scientific Reports (2017)
-
Semiconductor-inspired design principles for superconducting quantum computing
Nature Communications (2016)
-
The Hardest Superconducting Metal Nitride
Scientific Reports (2015)