Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The preparation and structure of salty ice VII under pressure

Abstract

It is widely accepted that ice, no matter what phase, is unable to incorporate large amounts of salt into its structure. This conclusion is based on the observation that on freezing of salt water, ice expels the salt almost entirely as brine. Here, we show that this behaviour is not an intrinsic physico-chemical property of ice phases. We demonstrate by neutron diffraction that substantial amounts of dissolved LiCl can be built homogeneously into the ice VII structure if it is produced by recrystallization of its glassy (amorphous) state under pressure. Such ‘alloyed’ ice VII has significantly different structural properties compared with pure ice VII, such as an 8% larger unit cell volume, 5 times larger displacement factors, an absence of a transition to an ordered ice VIII structure and plasticity. Our study suggests that there could be a whole new class of ‘salty’ high-pressure ice forms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neutron diffraction patterns of LiCl·6D2O under pressure.
Figure 2: Diffraction pattern of LiCl·6D2O at 4 GPa and 280 K.
Figure 3: Structure of pure and salty ice VII.

Similar content being viewed by others

References

  1. Pentrenko, V. F. & Whitworth, R. W. Physics of Ice (Oxford Univ. Press, 1999).

    Google Scholar 

  2. Jal, J. F., Soper, A. K., Carmona, P. & Dupuy, J. Microscopic structure of LiCl·6D2O in glassy and liquid phases. J. Phys. Condens. Matter 3, 551–567 (1991).

    Article  CAS  Google Scholar 

  3. Prevel, B., Dupuy-Philon, J., Jal, J. F., Legrand, J. F. & Chieux, P. Structural relation in supercooled glass-forming solutions: A neutron spin-echo study of LiCl·6D2O. J. Phys. Condens. Matter 6, 1279–1290 (1994).

    Article  CAS  Google Scholar 

  4. Nelmes, R. J. et al. Annealed high density amorphous ice under pressure. Nature Phys. 2, 414–418 (2006).

    Article  CAS  Google Scholar 

  5. Hönnerschneid, A., Nuss, J., Mühle, C. & Jansen, M. Die Kristallstrukturen der Monohydrate von Lithiumchlorid und Lithiumbromid. Z. Anorg. Allg. Chem. 629, 312–316 (2003).

    Article  Google Scholar 

  6. Culot, J. P., Piret, P. & Van Meerssche, M. Structure de NaBr·H2O. Bull. Soc. Fr. Minér. Cristallogr. 85, 282–289 (1962).

    CAS  Google Scholar 

  7. Klewe, B. & Pedersen, B. The crystal structure of sodium chloride dihydrate. Acta Crystallogr. B 30, 2363–2371 (1974).

    Article  Google Scholar 

  8. Verbist, J., Piret, P. & Van Meerssche, M. Structure cristalline et protonique de l’iodure de sodium dihydraté NaI·2H2O. Bull. Soc. Fr. Minér. Cristallogr. 93, 509–514 (1970).

    CAS  Google Scholar 

  9. Jorgensen, J. D. & Worlton, T. G. Disordered structure of D2O ice VII from in situ neutron powder diffraction. J. Chem. Phys. 83, 329–333 (1985).

    Article  CAS  Google Scholar 

  10. Metzger, T. H. & Trautmann, C. Strong atomic displacements around nitrogen in tantalum determined by energy-dispersive X-ray diffraction. Z. Phys. B 62, 63–70 (1985).

    Article  CAS  Google Scholar 

  11. Schubert, U., Metzger, H. & Peisl, J. Diffuse X-ray scattering from interstitial nitrogen in niobium: I. Huang diffuse scattering. J. Phys. F 14, 2457–2466 (1984).

    Article  CAS  Google Scholar 

  12. Besson, J. M. et al. Variation of interatomic distances in ice VIII to 10 GPa. Phys. Rev. B 49, 12540–12550 (1994).

    Article  CAS  Google Scholar 

  13. Takii, Y., Koga, K. & Tanaka, H. A plastic phase of water from computer simulations. J. Chem. Phys. 128, 204501–204508 (2008).

    Article  Google Scholar 

  14. Vos, W. L., Finger, L. W., Hemley, R. J. & Mao, H.-K. Novel H2–H2O clathrates at high pressures. Phys. Rev. Lett. 71, 3150–3153 (1993).

    Article  CAS  Google Scholar 

  15. Londono, D., Kuhs, W. F. & Finney, J. L. Enclathration of helium in ice II: The first helium-hydrate. Nature 332, 141–142 (1988).

    Article  CAS  Google Scholar 

  16. Hartwig, P. & Weppner, W. Ionic conductivities of lithium-halide-based quaternary compounds. Solid State Ion. 3/4, 249–254 (1981).

    Article  Google Scholar 

  17. Poulsen, F. W. Ionic conductivity of solid lithium iodine and its monohydrates. Solid State Ion. 2, 53–57 (1981).

    Article  CAS  Google Scholar 

  18. Frank, M. R. et al. Experimental study of the NaCl–H2O system up to 28 GPa: Implications of ice-rich planetary bodies. Phys. Earth Planet. Interiors 155, 152–162 (2006).

    Article  CAS  Google Scholar 

  19. Zimmer, Ch., Khurana, K. K. & Kivelson, M. G. Subsurface oceans on Europa and Callisto: Constraints from Galileo magnetometer observations. Icarus 147, 329–347 (2000).

    Article  CAS  Google Scholar 

  20. McCord, T. B., Hansen, G. B. & Hibbitts, C. A.. Hydrated salt minerals on Ganymede’s surface: Evidence of an ocean below. Science 292, 1523–1525 (2001).

    Article  CAS  Google Scholar 

  21. Lorenz, R. D. et al. Titan’s rotation reveals an internal ocean and changing zonal winds. Science 319, 1649–1651 (2008).

    Article  CAS  Google Scholar 

  22. Hansen, T. C., Henry, P. F., Fischer, H. E., Torregrossa, J. & Convert, P. The D20 instrument at the ILL: A versatile high-intensity two-axis neutron diffractometer. Meas. Sci. Tech. 19, 034001 (2008).

    Article  Google Scholar 

  23. Strässle, Th., Klotz, S., Hamel, G., Koza, M. & Schober, H. Experimental evidence for a crossover between two distinct mechanisms of amorphisation in ice under pressure. Phys. Rev. Lett. 99, 175501–175504 (2007).

    Article  Google Scholar 

  24. Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  CAS  Google Scholar 

  25. Besson, J. M. et al. Structural instability in ice VIII under pressure. Phys. Rev. Lett. 78, 3141–3144 (1997).

    Article  CAS  Google Scholar 

  26. Chialvo, A. A. & Simonson, J. M. Ion association in aqueous LiCl solutions at high concentration: Predicted results via molecular simulation. J. Chem. Phys. 124, 154509 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to W.F. Kuhs for pointing out the issue of plasticity in ice VII. We thank J.-L. Laborier (ILL), G. Hamel and J. Philippe for technical assistance and advice, as well as R. Pick, F. Frey and M. Schmidbauer for helpful discussions. A.M.S. acknowledges support from the French National Supercomputing Facility IDRIS, where all of the calculations have been carried out under the projects CP9-71387 and CP9-81387. This work is partially based on experiments carried out at the Swiss spallation source SINQ, Paul Scherrer Institute, Villigen, Switzerland.

Author information

Authors and Affiliations

Authors

Contributions

S.K., L.E.B, T.S. and T.C.H. carried out the experiments and A.M.S. the calculations. S.K. wrote the paper.

Corresponding author

Correspondence to Stefan Klotz.

Supplementary information

Supplementary Information

Supplementary Information (PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klotz, S., Bove, L., Strässle, T. et al. The preparation and structure of salty ice VII under pressure. Nature Mater 8, 405–409 (2009). https://doi.org/10.1038/nmat2422

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2422

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing