Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electron tomography and holography in materials science

Abstract

The rapid development of electron tomography, in particular the introduction of novel tomographic imaging modes, has led to the visualization and analysis of three-dimensional structural and chemical information from materials at the nanometre level. In addition, the phase information revealed in electron holograms allows electrostatic and magnetic potentials to be mapped quantitatively with high spatial resolution and, when combined with tomography, in three dimensions. Here we present an overview of the techniques of electron tomography and electron holography and demonstrate their capabilities with the aid of case studies that span materials science and the interface between the physical sciences and the life sciences.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Electron tomography.
Figure 2: Dual-axis electron tomography.
Figure 3: Tomographic reconstruction of a heterogeneous catalyst.
Figure 4: Tomographic reconstruction of biogenic magnetite crystals.
Figure 5: 3D reconstructions of precipitates and nanoparticles.
Figure 6: Electron holography of magnetic nanoparticle rings.
Figure 7: Magnetic induction maps of geological and biogenic magnetic particles.
Figure 8: Electron holographic tomography.

References

  1. Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Mater. 8, 263–270 (2009).

    CAS  Google Scholar 

  2. Urban, K. W. Is science prepared for atomic-resolution microscopy? Nature Mater. 8, 260–262 (2009).

    CAS  Google Scholar 

  3. Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten. Ber. Verh. K. Sachs. Ges. Wiss. Leipzig Math.-Phys. Kl. 69, 262–277 (1917).

    Google Scholar 

  4. Cormack, A. M. Representation of a function by its line integrals with some radiological applications. J. Appl. Phys. 34, 2722–2727 (1963).

    Google Scholar 

  5. Hounsfield, G. N. A method of and apparatus for examination of a body by radiation such as X or gamma radiation. UK patent 1,283,915 (1972).

  6. De Rosier, D. J. & Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134 (1968).

    CAS  Google Scholar 

  7. Hoppe, W., Langer, R., Knesch, G. & Poppe, C. Protein-kristallstrukturanalyse mit Elektronenstrahlen. Naturwissenschaften 55, 333–336 (1968).

    CAS  Google Scholar 

  8. Hart, R. G. Electron microscopy of unstained biological material: the polytropic montage. Science 159, 1464–1467 (1968).

    CAS  Google Scholar 

  9. Unwin, P. N. T. & Henderson, R. Molecular structure determination by electron microscopy of unstained crystalline specimens. J. Mol. Biol. 94, 425–440 (1975).

    CAS  Google Scholar 

  10. Frank, J. Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Academic, 1996).

    Google Scholar 

  11. Baumeister, W., Grimm, R. & Walz, J. Electron tomography of molecules and cells. Trends Cell Biol. 9, 81–85 (1999).

    CAS  Google Scholar 

  12. Chao, W., Hartneck, B. D., Liddle, J. A., Anderson, E. H. & Attwood, D. T. Soft X-ray microscopy at a spatial resolution better than 15nm. Nature 435, 1210–1213 (2005).

    CAS  Google Scholar 

  13. Chapman, H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006).

    Google Scholar 

  14. Magerle, R. Nanotomography. Phys. Rev. Lett. 85, 2749–2752 (2000).

    CAS  Google Scholar 

  15. Cerezo, A., Godfrey, T. J. & Smith, G. D. W. Application of a position-sensitive detector to atom probe microanalysis. Rev. Sci. Instrum. 59, 862–866 (1988).

    Google Scholar 

  16. Inkson, B. J., Mulvihill, M. & Möbus, G. 3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography. Scripta Mater. 45, 753–758 (2001).

    CAS  Google Scholar 

  17. Schaffer, M., Wagner, J., Schaffer, B., Schmied, M. & Mulders, H. Automated three-dimensional X-ray analysis using a dual-beam FIB. Ultramicroscopy 107, 587–597 (2007).

    CAS  Google Scholar 

  18. Konrad, J., Zaefferer, S. & Raabe, D. Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Math. 54, 1369–1380 (2006).

    CAS  Google Scholar 

  19. Uchic, M. D., Groeber, M. A., Dimiduk, D. M. & Simmons, J. P. 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scripta Mater. 55, 23–28 (2006).

    CAS  Google Scholar 

  20. Spontak, R. J., Williams, M. C. & Agard, D. A. Three-dimensional study of cylindrical morphology in a styrene–butadiene–styrene block copolymer. Polymer 29, 387–395 (1988).

    CAS  Google Scholar 

  21. Koster, A. J., Ziese, U., Verkleij, A. J., Janssen, A. H. & de Jong, K. P. Three-dimensional electron microscopy: a novel imaging and characterization technique with nanometer scale resolution for materials science. J. Phys. Chem. B 104, 9368–9370 (2000).

    CAS  Google Scholar 

  22. Hawkes, P. W. The Electron Microscope as a Structure Projector in Electron Tomography: Three-Dimensional Imaging with the Transmission Electron Microscope (ed. Frank, J.) 17–39 (Plenum, 1992).

    Google Scholar 

  23. Crowther, R. A., de Rosier, D. J. & Klug, A. The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc. R. Soc. Lond. A 319, 317–340 (1970).

    Google Scholar 

  24. Radermacher, M. Weighted Back-Projection Methods in Electron Tomography 2nd edn (ed. Frank, J.) 245–274 (Springer, 2006).

    Google Scholar 

  25. Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972).

    CAS  Google Scholar 

  26. Batenburg, K. J. & Sijbers, J. in Proc. IEEE Conf. Image Processing Vol. 4, 133–136 (IEEE, 2007).

    Google Scholar 

  27. Batenburg, K. J. Network Flow Algorithms for Discrete Tomography. Ph.D. thesis, Univ. Leiden; http://visielab.ua.ac.be/staff/batenburg/papers/ba_phdthesis_2006.pdf (2006).

    Google Scholar 

  28. Kawase, N., Kato, M., Nishioka, H. & Jinnai, H. Transmission electron microtomography without the “missing wedge” for quantitative structural analysis. Ultramicroscopy 107, 8–15 (2007).

    CAS  Google Scholar 

  29. Arslan, I., Tong, J. R. & Midgley, P. A. Reducing the missing wedge: high-resolution dial axis tomography of inorganic materials. Ultramicroscopy 106, 994–1000 (2006).

    CAS  Google Scholar 

  30. Tong, J. R., Arslan, I. & Midgley, P. A. A novel dual-axis iterative algorithm for electron tomography. J. Struct. Biol. 153, 55–63 (2006).

    Google Scholar 

  31. Koguchi, M. et al. Three-dimensional STEM for observing nanostructures. J. Electron Microsc. 50, 235–241 (2001).

    CAS  Google Scholar 

  32. Arslan, I., Marquis, E. A., Homer, M., Hekmaty, M. A. & Bartelt, N. C. Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 1579–1585 (2008).

    CAS  Google Scholar 

  33. Midgley, P. A. & Weyland, M. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413–431 (2003).

    CAS  Google Scholar 

  34. Midgley, P. A., Weyland, M., Thomas, J. M. & Johnson, B. F. G. Z-Contrast tomography: a technique in three-dimensional nanostructural analysis based on Rutherford scattering. Chem. Commun. 10, 907–908 (2001).

    Google Scholar 

  35. Thomas, J. M. et al. The chemical application of high-resolution electron tomography: bright field or dark field? Angew. Chem. Int. Ed. 43, 6745–6747 (2004).

    CAS  Google Scholar 

  36. Ward, E. P. W., Yates, T. J. V., Fernández, J.-J., Vaughan, D. E. W. & Midgley, P. A. Three-dimensional nanoparticle distribution and local curvature of heterogeneous catalysts revealed by electron tomography. J. Phys. Chem. C 111, 11501–11505 (2007).

    CAS  Google Scholar 

  37. Weyland, M., Yates, T. J. V., Dunin-Borkowski, R. E., Laffont, L. & Midgley, P. A. Nanoscale analysis of three-dimensional structures by electron tomography. Scripta Mater. 55, 29–33 (2006).

    CAS  Google Scholar 

  38. Buseck, P. R. et al. Magnetite morphology and life on Mars. Proc. Natl Acad. Sci. USA 98, 13490–13495 (2001).

    CAS  Google Scholar 

  39. De Jong, K. P. & Koster, A. J. Three-dimensional electron microscopy of mesoporous materials - recent strides towards spatial imaging at the nanometer scale. ChemPhysChem 3, 776–780 (2002).

    CAS  Google Scholar 

  40. Yates, T. J. V. et al. Three-dimensional real-space crystallography of MCM-48 mesoporous silica revealed by scanning transmission electron tomography. Chem. Phys. Lett. 418, 540–543 (2006).

    CAS  Google Scholar 

  41. Kaneko, K. et al. TEM characterization of Ge precipitates in an Al–1.6 at% Ge alloy. Ultramicroscopy 108, 210–220 (2008).

    CAS  Google Scholar 

  42. Porter, A. E. et al. Direct imaging of single-walled carbon nanotubes in human cells. Nature Nanotechnol. 2, 713–717 (2007).

    CAS  Google Scholar 

  43. Midgley, P. A., Weyland, M. & Stegmann, H. in Advanced Tomographic Methods in Materials Research and Engineering (ed. Banhart, J.) 335–373 (Oxford Univ. Press, 2008).

    Google Scholar 

  44. Bals, S., Batenburg, K. J., Verbeeck, J., Sijbers, J. & van Tendeloo, G. Quantitative three-dimensional reconstruction of catalyst particles for bamboo-like carbon nanotubes. Nano Lett. 7, 3669–3674 (2007).

    CAS  Google Scholar 

  45. Kubel, C. et al. Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 11, 378–400 (2005).

    Google Scholar 

  46. Ercius, P., Weyland, M., Muller, D. A. & Gignac, L. M. Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl. Phys. Lett. 88, 243116 (2006).

    Google Scholar 

  47. Jeanguillaume, C. & Colliex, C. Spectrum-image: the next step in EELS digital acquisition and processing. Ultramicroscopy 28, 252–257 (1989).

    Google Scholar 

  48. Lavergne, J. L., Martin, J. M. & Belin, M. interactive electron-energy-loss elemental mapping by the imaging-spectrum method. Microsc. Microanal. Microstruct. 3, 517–528 (1992).

    Google Scholar 

  49. Thomas, P. J. & Midgley, P. A. Image-spectroscopy - I. The advantages of increased spectral information for compositional EFTEM analysis. Ultramicroscopy 88, 179–186 (2001).

    CAS  Google Scholar 

  50. Mobus, G. & Inkson, B. J. Three-dimensional reconstruction of buried nanoparticles by element-sensitive tomography based on inelastically scattered electrons. Appl. Phys. Lett. 79, 1369–1371 (2001).

    CAS  Google Scholar 

  51. Weyland, M. & Midgley, P. A. Extending energy-filtered transmission electron microscopy (EFTEM) into three dimensions using electron tomography. Microsc. Microanal. 9, 542–555 (2003).

    CAS  Google Scholar 

  52. Yurtsever, A., Weyland, M. & Muller, D. A. Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography. Appl. Phys. Lett. 89, 151920 (2006).

    Google Scholar 

  53. Gass, M. H., Koziol, K. K. K., Windle, A. H. & Midgley, P. A. 4-dimensional spectral-tomography of carbonaceous nano-composites. Nano Lett. 6, 376–379 (2006).

    CAS  Google Scholar 

  54. Mobus, G., Doole, R. C. & Inkson, B. J. Spectroscopic electron tomography. Ultramicroscopy 96, 433–451 (2003).

    CAS  Google Scholar 

  55. Yaguchi, T. et al. Elemental mapping using a dedicated FIB/STEM system. Microsc. Microanal. 10 (suppl. 2), 1030–1031 (2004).

    Google Scholar 

  56. Barnard, J. S., Sharp, J., Tong, J. R. & Midgley, P. A. High-resolution three-dimensional imaging of dislocations. Science 303, 319 (2006).

    Google Scholar 

  57. Hata, S. et al. Electron tomography imaging and analysis of γ′ and γ domains in Ni-based superalloys. Adv. Mater. 20, 1905–1909 (2008).

    CAS  Google Scholar 

  58. Sharp, J. H., Barnard, J. S., Kaneko, K., Higashida, K. & Midgley, P. A. Dislocation tomography made easy: a reconstruction from ADF STEM images obtained using automated image shift correction. J. Phys. Conf. Ser. 126, 012013 (2008).

    Google Scholar 

  59. Sadan, M. B. et al. Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures. Nano Lett. 8, 891–896 (2008).

    Google Scholar 

  60. Jinschek, J. R. et al. 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: prospects of atomic resolution electron tomography. Ultramicroscopy 108, 589–604 (2008).

    CAS  Google Scholar 

  61. Rodenburg, J. M., Hurst, A. C. & Cullis, A. G. Transmission microscopy without lenses for objects of unlimited size. Ultramicroscopy 107, 227–231 (2007).

    CAS  Google Scholar 

  62. Midgley, P. A. An introduction to electron holography. Micron 32, 167–184 (2001).

    CAS  Google Scholar 

  63. Gabor, D. Microscopy by reconstructed wavefronts. Proc. R. Soc. Lond. A 197, 454–487 (1949).

    Google Scholar 

  64. Jönsson, C. Elektroneninterferenzen an mehereren künstlich hergestellten Feinspalten. Z. Phys. A 161, 454–474 (1961).

    Google Scholar 

  65. Merli, P. G., Missiroli, G. F. & Pozzi, G. On the statistical aspect of electron interference phenomena. Am. J. Phys. 44, 306–307 (1976).

    Google Scholar 

  66. Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T. & Ezawa, H. Demonstration of single-electron build-up of an interference pattern. Am. J. Phys. 57, 117–120 (1989).

    Google Scholar 

  67. Junginger, F. et al. Spin torque and heating effects in current-induced domain wall motion probed by high-resolution transmission electron microscopy. Appl. Phys. Lett. 90, 132506 (2007).

    Google Scholar 

  68. Bromwich, T. J. et al. Remanent magnetic states and interactions in nano-pillars. Nanotechnology 17, 4367–4373 (2006).

    CAS  Google Scholar 

  69. Völkl, E., Allard, L. F. & Joy, D. C. (eds) Introduction to Electron Holography (Plenum, 1998).

    Google Scholar 

  70. Möllenstedt, G. & Düker, H. Fresnelscher Interferenzversuch mit einem Biprisma für Elektronenwellen. Naturwissenschaften 42, 41 (1955).

    Google Scholar 

  71. Orchowski, A., Rau, W. D. & Lichte, H. Electron holography surmounts resolution limit of electron microscopy. Phys. Rev. Lett. 74, 399–402 (1995).

    CAS  Google Scholar 

  72. Tonomura, A. Electron Holography (Springer, 1999).

    Google Scholar 

  73. Osakabe, N. et al. Observation of recorded magnetization pattern by electron holography. Appl. Phys. Lett. 42, 746–748 (1983).

    CAS  Google Scholar 

  74. Hasegawa, S. et al. Magnetic-flux quanta in superconducting thin films observed by electron holography and digital phase analysis. Phys. Rev. B 43, 7631–7650 (1991).

    CAS  Google Scholar 

  75. Bonevich, J. E. et al. Electron holography observation of vortex lattices in a superconductor. Phys. Rev. Lett. 70, 2952–2955 (1993).

    CAS  Google Scholar 

  76. Tonomura, A. et al. Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave. Phys. Rev. Lett. 56, 792–795 (1986).

    CAS  Google Scholar 

  77. Dunin-Borkowski, R. E. et al. Off-axis electron holography of magnetic nanowires and chains, rings and planar arrays of magnetic nanoparticles. Microsc. Res. Tech. 64, 390–402 (2004).

    Google Scholar 

  78. Tripp, S. L., Dunin-Borkowski, R. E. & Wei, A. Flux closure in self-assembled cobalt nanoparticle rings. Angew. Chem. 42, 5591–5593 (2003).

    CAS  Google Scholar 

  79. Harrison, R. J., Dunin-Borkowski, R. E. & Putnis, A. Direct imaging of nanoscale magnetic interactions in minerals. Proc. Natl Acad. Sci. USA 99, 16556–16561 (2002).

    CAS  Google Scholar 

  80. Feinberg, J. M. et al. Effects of internal mineral structures on the magnetic remanence of silicate-hosted titanomagnetite inclusions: an electron holography study. J. Geophys. Res. 111, B12S15 (2006).

    Google Scholar 

  81. Dunin-Borkowski, R. E. et al. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282, 1868–1870 (1998).

    CAS  Google Scholar 

  82. Kasama, T. et al. Magnetic properties, microstructure, composition and morphology of greigite nanocrystals in magnetotactic bacteria from electron holography and tomography. Am. Mineral. 91, 1216–1229 (2006).

    CAS  Google Scholar 

  83. Loudon, J. C., Mathur, N. D. & Midgley, P. A. Charge-ordered ferromagnetic phase in La0.5Ca0.5MnO3 . Nature 420, 797–800 (2002).

    CAS  Google Scholar 

  84. Murakami, Y., Yoo, J. H., Shindo, D., Atou, T. & Kikuchi, M. Magnetization distribution in the mixed-phase state of hole-doped manganites. Nature 423, 965–968 (2003).

    CAS  Google Scholar 

  85. Kasama, T. et al. Off-axis electron holography of pseudo-spin-valve thin film magnetic elements. J. Appl. Phys. 98, 013903 (2005).

    Google Scholar 

  86. Hu, H., Wang, H., McCartney, M. R. & Smith, D. J. Switching mechanisms and remanent states for nanoscale slotted Co circular elements studied by electron holography. Phys. Rev. B 73, 153401 (2006).

    Google Scholar 

  87. Merli, P. G., Missiroli, G. F. & Pozzi, G. P–n junction observations by interference electron microscopy. J. Microscopie 21, 11–20 (1974).

    Google Scholar 

  88. Frabboni, S., Matteucci, G. & Pozzi, G. Observation of electrostatic fields by electron holography: the case of reversed biased p–n junctions. Ultramicroscopy 23, 29–38 (1987).

    Google Scholar 

  89. Matteucci, G., Missiroli, G. F., Muccini, M. & Pozzi, G. Electron holography in the study of the electrostatic fields: the case of charged microtips. Ultramicroscopy 45, 77–83 (1992).

    Google Scholar 

  90. Cumings, J., Zettl, A., McCartney, M. R. & Spence, J. C. H. Electron holography of field-emitting carbon nanotubes. Phys. Rev. Lett. 88, 056804 (2002).

    Google Scholar 

  91. Matsumoto, T. et al. Ferroelectric 90° domain structure in a thin film of BaTiO3 fine ceramics observed by 300 kV electron holography. Appl. Phys. Lett. 92, 072902 (2008).

    Google Scholar 

  92. Rau, W. D., Schwander, P., Baumann, F. H., Höppner, W. & Ourmazd, A. Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys. Rev. Lett. 82, 2614–2617 (1999).

    CAS  Google Scholar 

  93. Gribelyuk, M. A. et al. Mapping of electrostatic potential in deep submicron CMOS devices by electron holography. Phys. Rev. Lett. 89, 025502 (2002).

    CAS  Google Scholar 

  94. Twitchett, A. C., Dunin-Borkowski, R. E. & Midgley, P. A. Quantitative electron holography of biased semiconductor devices. Phys. Rev. Lett. 88, 238302 (2002).

    CAS  Google Scholar 

  95. Twitchett, A. C., Dunin-Borkowski, R. E., Hallifax, R. J., Broom, R. F. & Midgley, P. A. Off-axis electron holography of unbiased and reverse-biased focused ion beam milled Si p-n junctions. Microsc. Microanal. 11, 66–78 (2005).

    CAS  Google Scholar 

  96. Cooper, D., Twitchett-Harrison, A. C., Midgley, P. A. & Dunin-Borkowski, R. E. The influence of electron irradiation on electron holography of focused ion beam milled GaAs p-n junctions. J. Appl. Phys. 101, 094508 (2007).

    Google Scholar 

  97. Cooper, D. et al. Improvement in electron holographic phase images of focused-ion-beam-milled GaAs and Si p-n junctions by in situ annealing. Appl. Phys. Lett. 88, 063510 (2006).

    Google Scholar 

  98. Beleggia, M., Fazzini, P. F., Merli, P. G. & Pozzi, G. Influence of charged oxide layers on TEM imaging of reverse-biased p-n junctions. Phys. Rev. B 67, 045328 (2003).

    Google Scholar 

  99. Houben, L., Luysberg, M. & Brammer, T. Illumination effects in holographic imaging of the electrostatic potential in semiconductors in transmission electron microscopy. Phys. Rev. B 70, 165313 (2004).

    Google Scholar 

  100. Hÿtch, M. J., Houdellier, F., Hüe, F. & Snoeck, E. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086–1089 (2008).

    Google Scholar 

  101. Twitchett-Harrison, A. C., Yates, T. J. V., Newcomb, S. B., Dunin-Borkowski, R. E. & Midgley, P. A. High-resolution three-dimensional mapping of semiconductor dopant potentials. Nano Lett. 7, 2020–2023 (2007).

    CAS  Google Scholar 

  102. Kasama, T., Antypas, Y., Chong, R. K. K. & Dunin-Borkowski, R. E. in Electron Microscopy of Molecular and Atom-Scale Mechanical Behavior, Chemistry and Structure (eds Martin, D. C., Muller, D. A., Midgley, P. A. & Stach, E. A.) P5.01 (Mater. Res. Soc. Proc. 839, 2005).

    Google Scholar 

  103. Phatak, C., Beleggia, M. & de Graef, M. Vector field electron tomography of magnetic materials: theoretical development. Ultramicroscopy 108, 503–513 (2008).

    CAS  Google Scholar 

  104. Lai, G. M. et al. 3-dimensional reconstruction of magnetic vector-fields using electron-holographic interferometry. J. Appl. Phys. 75, 4593–4598 (1994).

    CAS  Google Scholar 

  105. Lade, S. J., Paganin, D. & Morgan, M. J. Electron tomography of electromagnetic fields, potentials and sources. Opt. Commun. 253, 392–400 (2005).

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to many colleagues for contributions to the work presented here, including M. Weyland, I. Arslan, T. J. V. Yates, M. H. Gass, E. P. W. Ward, L. Laffont, K. Kaneko, J. S. Barnard, J. Sharp, J. R. Tong, J.-C. Hernandez, A. Hungria, J. M. Thomas, T. Kasama, A. C. Twitchett-Harrison, R. J. Harrison, M. Pósfai and M. R. McCartney. Financial support from the European Union Framework 6 programme under a contract for an Integrated Infrastructure Initiative (Reference 026019 ESTEEM) is acknowledged. We are also grateful to the EPSRC, the Royal Society and RIKEN for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul A. Midgley or Rafal E. Dunin-Borkowski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Midgley, P., Dunin-Borkowski, R. Electron tomography and holography in materials science. Nature Mater 8, 271–280 (2009). https://doi.org/10.1038/nmat2406

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing