Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cloning polymer single crystals through self-seeding

Abstract

In general, when a crystal is molten, all molecules forget about their mutual correlations and long-range order is lost. Thus, a regrown crystal does not inherit any features from an initially present crystal. Such is true for materials exhibiting a well-defined melting point. However, polymer crystallites have a wide range of melting temperatures, enabling paradoxical phenomena such as the coexistence of melting and crystallization. Here, we report a self-seeding technique that enables the generation of arrays of orientation-correlated polymer crystals of uniform size and shape (‘clones’) with their orientation inherited from an initial single crystal. Moreover, the number density and locations of these cloned crystals can to some extent be predetermined through the thermal history of the starting crystal. We attribute this unique behaviour of polymers to the coexistence of variable fold lengths in metastable crystalline lamellae, typical for ordering of complex chain-like molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transforming a large compact dendritic single crystal into a plethora of uniquely oriented small crystals.
Figure 2: Nucleating crystals at the periphery of the seeding crystal following a two-step crystallization procedure.
Figure 3: A control experiment using an organometallic homopolymer.
Figure 4: Average number density N of baby crystals after annealing at different self-seeding temperatures (TSS).
Figure 5: Schematic presentation of essential steps in polymer crystallization enabling cloning.
Figure 6: Distribution of local lamellar thickness (stem length L) within a polymer crystal obtained by dynamic Monte Carlo simulation.

Similar content being viewed by others

References

  1. Wunderlich, B. Macromolecular Physics, vol. 2: Crystal Nucleation, Growth, Annealing Ch. V (Academic, 1976).

    Google Scholar 

  2. Weissbuch, I., Lahav, M. & Leiserowitz, L. Toward stereochemical control, monitoring, and understanding of crystal nucleation. Cryst. Growth Des. 3, 125–150 (2003).

    Article  CAS  Google Scholar 

  3. Wittmann, J. C. & Lotz, B. Epitaxial crystallization of polymers on organic and polymeric substrates. Prog. Polym. Sci. 15, 909–948 (1990).

    Article  CAS  Google Scholar 

  4. Blundell, D. J., Keller, A. & Kovacs, A. J. A new self-nucleation phenomenon and its application to the growing of polymer crystals from solution. J. Polym. Sci. B 4, 481–486 (1966).

    Article  CAS  Google Scholar 

  5. Blundell, D. J. & Keller, A. Nature of self-seeding polyethylene crystal nuclei. J. Macromol. Sci.-Phys. B 2, 301–336 (1968).

    Article  CAS  Google Scholar 

  6. Fillon, B., Wittmann, J. C., Lotz, B. & Thierry, A. Self-nucleation and recrystallization of isotactic polypropylene (α phase) investigated by differential scanning calorimetry. J. Polym. Sci. B 31, 1383–1393 (1993).

    Article  CAS  Google Scholar 

  7. Massa, M. V., Lee, M. S. M. & Dalnoki-Veress, K. Crystal nucleation of polymers confined to droplets: Memory effects. J. Polym. Sci. B 43, 3438–3443 (2005).

    Article  CAS  Google Scholar 

  8. Maus, A., Hempel, E., Thurn-Albrecht, T. & Saalwächter, K. Memory effect in isothermal crystallization of syndiotactic polypropylene—role of melt structure and dynamics? Eur. Phys. J. E 23, 91–101 (2007).

    Article  CAS  Google Scholar 

  9. Lorenzo, A. T., Arnal, M. L., Sanchez, J. J. & Müller, A. J. Effect of annealing time on the self-nucleation behaviour of semicrystalline polymers. J. Polym. Sci. B 44, 1738–1750 (2006).

    CAS  Google Scholar 

  10. Müller, A. J. & Arnal, M. L. Thermal fractionation of polymers. Prog. Polym. Sci. 30, 559–603 (2005).

    Article  Google Scholar 

  11. Reiter, G. et al. Morphologies of polymer crystals in thin films. Lecture Notes Phys. 714, 179–200 (2007).

    CAS  Google Scholar 

  12. Grozev, N., Botiz, I. & Reiter, G. Morphological instabilities of polymer crystals. Eur. Phys. J. E 27, 63–71 (2008).

    Article  CAS  Google Scholar 

  13. Xiao, R.-F., Alexander, J. I. D. & Rosenberger, F. Growth morphology with anisotropic surface kinetics. J. Cryst. Growth 100, 313–329 (1990).

    Article  Google Scholar 

  14. Brener, E., Müller-Krumbhaar, H. & Temkin, D. Structure formation and the morphology diagram of possible structures in two-dimensional diffusional growth. Phys. Rev. E 54, 2714–2722 (1996).

    Article  CAS  Google Scholar 

  15. Libbrecht, K. G. The physics of snow crystals. Rep. Prog. Phys. 68, 855–895 (2005).

    Article  Google Scholar 

  16. Mullins, W.W. & Sekerka, R.F. Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34, 323–329 (1963).

    Article  CAS  Google Scholar 

  17. Sekerka, R. F. Role of instabilities in determination of the shapes of growing crystals. J. Cryst. Growth 128, 1–12 (1993).

    Article  CAS  Google Scholar 

  18. Kovacs, A. J., Lotz, B. & Keller, A. Multiple twinning in polyethylene oxide single crystals-a scheme for the formation of growth twins from self-seeding nuclei. J. Macromol. Sci. - Phys. B 3, 385–425 (1969).

    Article  CAS  Google Scholar 

  19. Reiter, G. Model experiments for a molecular understanding of polymer crystallization. J. Polym. Sci. Part B 41, 1869–1877 (2003).

    Article  CAS  Google Scholar 

  20. Sommer, J. -U. & Reiter, G. Morphogenesis of lamellar polymer crystals. Europhys. Lett. 56, 755–761 (2001).

    Article  CAS  Google Scholar 

  21. Sommer, J. -U. & Reiter, G. Morphogenesis and nonequilibrium pattern formation in two-dimensional polymer crystallization. Phase Transit. 77, 703–745 (2004).

    Article  CAS  Google Scholar 

  22. Manners, I. Polymer science with transition metals and main group elements: Towards functional, supramolecular inorganic polymeric materials. J. Polym. Sci. A 40, 179–191 (2002).

    Article  CAS  Google Scholar 

  23. Lammertink, R. G. H., Hempenius, M. A., Manners, I. & Vancso, G. J. Crystallization and melting behavior of poly(ferrocenyldimethylsilanes) obtained by anionic polymerization. Macromolecules 31, 795–800 (1998).

    Article  CAS  Google Scholar 

  24. Manners, I. Putting metals into polymers. Science 294, 1664–1666 (2001).

    Article  CAS  Google Scholar 

  25. Sunagawa, I. Crystals: Growth, Morphology, and Perfection (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  26. Sommer, J.-U. Theoretical aspects of the equilibrium state of chain crystals. Lecture Notes Phys. 714, 19–45 (2007).

    Article  CAS  Google Scholar 

  27. Wunderlich, B. Macromolecular Physics, vol. 1: Crystal Structure, Morphology, Defects Ch. III, 194 (Academic, 1973).

    Google Scholar 

  28. Strobl, G. Crystallization and melting of bulk polymers: New observations, conclusions and a thermodynamic scheme. Prog. Polym. Sci. 31, 398–442 (2006).

    Article  CAS  Google Scholar 

  29. Weeks, J. J. Melting temperature and change of lamellar thickness with time for bulk polyethylene. J. Res. Natl Bur. Stand. A 67, 441–451 (1963).

    Article  CAS  Google Scholar 

  30. Anderson, K. L. & Goldbeck-Wood, G. Simulation of thickening growth in polymer crystallisation. Polymer 41, 8849–8855 (2000).

    Article  CAS  Google Scholar 

  31. Doye, J. P. K. & Frenkel, D. Mechanism of thickness determination in polymer crystals. Phys. Rev. Lett. 81, 2160–2163 (1998).

    Article  CAS  Google Scholar 

  32. Thomson, W. On the equilibrium of vapour at a curved surface of liquid. Phil. Mag. 42, 448–453 (1871).

    Article  Google Scholar 

  33. Hu, W.-B. & Frenkel, D. Polymer crystallization driven by anisotropic interactions. Adv. Polym. Sci. 191, 1–35 (2005).

    Article  CAS  Google Scholar 

  34. Hu, W.-B., Frenkel, D. & Mathot, V.B.F. Sectorization of a lamellar polymer crystal studied by dynamic Monte Carlo simulations. Macromolecules 36, 549–552 (2003).

    Article  CAS  Google Scholar 

  35. Pashley, W. The nucleation, growth, structure and epitaxy of thin surface films. Adv. Phys. 14, 327–416 (1965).

    Article  CAS  Google Scholar 

  36. Hu, Z., Baralia, G., Bayot, V., Gohy, J.-F. & Jonas, A. M. Nanoscale control of polymer crystallization by nanoimprint lithography. Nano Lett. 5, 1738–1743 (2005).

    Article  CAS  Google Scholar 

  37. Zhang, K.-Q. & Liu, X. Y. In situ observation of colloidal monolayer nucleation driven by an alternating electric field. Nature 429, 739–743 (2004).

    Article  CAS  Google Scholar 

  38. Liu, X. et al. The controlled evolution of a polymer single crystal. Science 307, 1763–1766 (2005).

    Article  CAS  Google Scholar 

  39. Mullin, J. W. Crystallization 3rd edn, Ch. 5 and 6 (Butterworth–Heinemann, 1992).

    Google Scholar 

  40. Capper, P. (ed.) Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials (Wiley–VCH, 2005).

  41. Huang, Y. et al. Crystallization, melting, and morphology of poly(ethylene oxide) diblock copolymer containing a tablet-like block of poly{2,5-bid[(4-bis-methoxyphenyl)oxycarbonyl]styrene}. Polymer 46, 10148–10157 (2005).

    Article  CAS  Google Scholar 

  42. Xu, J. et al. Equilibrium melting point of poly(ferrocenyl dimethylsilane). DESY Annu. Rep. 1131–1132 (2006).

Download references

Acknowledgements

We acknowledge V. Bellas (Technische Universität Darmstadt, Germany) for synthesizing the PFS polymer, and K. Albrecht, A. Mourran and M. Möller (DWI Aachen, Germany) for providing the P2VP-PEO block copolymer. J.X. is grateful to B. Stühn, I. Alig and B.-J. Jungnickel for helpful discussions. Financial support provided through the German Research Foundation (DFG), the European Community’s ‘Marie-Curie Actions’ under contract MRTN-CT-2004-005516 [BioPolySurf] and by the European COST Action P12 is acknowledged. W.H. is grateful for research support from the Chinese Ministry of Education (NCET-04-0448) and the National Natural Science Foundation of China (NNSFC Grants 20474027, 20674036, 20825415).

Author information

Authors and Affiliations

Authors

Contributions

The idea for this work arose from a visit by J.X. to ICSI-Mulhouse. J.X. and Y.M. carried out all experiments. Computer simulations were done by Y.M. and W.H. The control and coordination of polymer synthesis at TUD/DKI was assured by M.R. G.R. supervised and coordinated the whole project. All authors have contributed equally in defining the content and writing the present manuscript.

Corresponding authors

Correspondence to Jianjun Xu or Wenbing Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Ma, Y., Hu, W. et al. Cloning polymer single crystals through self-seeding. Nature Mater 8, 348–353 (2009). https://doi.org/10.1038/nmat2405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing