Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hidden order in URu2Si2 originates from Fermi surface gapping induced by dynamic symmetry breaking

This article has been updated

Abstract

Spontaneous, collective ordering of electronic degrees of freedom leads to second-order phase transitions that are characterized by an order parameter driving the transition. The notion of a ‘hidden order’ has recently been used for a variety of materials where a clear phase transition occurs without a known order parameter. The prototype example is the heavy-fermion compound URu2Si2, where a mysterious hidden-order transition occurs at 17.5 K. For more than twenty years this system has been studied theoretically and experimentally without a firm grasp of the underlying physics. Here, we provide a microscopic explanation of the hidden order using density-functional theory calculations. We identify the Fermi surface ‘hot spots’ where degeneracy induces a Fermi surface instability and quantify how symmetry breaking lifts the degeneracy, causing a surprisingly large Fermi surface gapping. As the mechanism for the hidden order, we deduce spontaneous symmetry breaking through a dynamic mode of antiferromagnetic moment excitations.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The theoretical energy dispersions of URu2Si2.
Figure 2: The Fermi surface of URu2Si2.
Figure 3: Fermi surface gap of URu2Si2 versus the uranium total moment along the c axis.

Change history

  • 26 February 2009

    In the version of this article initially published online, the caption for Figure 2 was incorrect; it has now been corrected on all versions of the article.

References

  1. Palstra, T. T. M. et al. Superconducting and magnetic transitions in the heavy-fermion system URu2Si2 . Phys. Rev. Lett. 55, 2727–2730 (1985).

    Article  CAS  Google Scholar 

  2. Schlabitz, W. et al. Superconductivity and magnetic order in a strongly interacting Fermi-system: URu2Si2 . Z. Phys. B 62, 171–177 (1986).

    Article  CAS  Google Scholar 

  3. Maple, M. B. et al. Partially gapped Fermi surface in the heavy-fermion superconductor URu2Si2 . Phys. Rev. Lett. 56, 185–188 (1986).

    Article  CAS  Google Scholar 

  4. Broholm, C. et al. Magnetic excitations and ordering in the heavy-electron superconductor URu2Si2 . Phys. Rev. Lett. 58, 1467–1470 (1987).

    Article  CAS  Google Scholar 

  5. Kim, J. S., Hall, D., Kumar, P. & Steward, G. R. Specific heat of URu2Si2 in fields up 42 T: Clues to the hidden order. Phys. Rev. B 67, 014404 (2003).

    Article  Google Scholar 

  6. Buyers, W. J. L. Low moments in heavy-fermion systems. Physica B 223/224, 9–14 (1996).

    Article  Google Scholar 

  7. Matsuda, K. et al. Spatially inhomogeneous development of antiferromagnetism in URu2Si2: Evidence from 29Si NMR under pressure. Phys. Rev. Lett. 87, 087203 (2001).

    Article  CAS  Google Scholar 

  8. Amitsuka, H. et al. Pressure-temperature phase diagram of the heavy-electron superconductor URu2Si2 . J. Magn. Magn. Mater. 310, 214–220 (2007).

    Article  CAS  Google Scholar 

  9. Jeffries, J. R., Butch, N. P., Yukich, B. T. & Maple, M. B. Competing ordered phases in URu2Si2: Hydrostatic pressure and rhenium substitution. Phys. Rev. Lett. 99, 217207 (2007).

    Article  CAS  Google Scholar 

  10. Hassinger, E. et al. Temperature-pressure phase diagram of URu2Si2 from resistivity measurements and ac calorimetry: Hidden order and Fermi-surface nesting. Phys. Rev. B 77, 115117 (2008).

    Article  Google Scholar 

  11. Nakashima, M. et al. The de Haas-van Alphen effect in URu2Si2 under pressure. J. Phys. Condens. Matter. 15, S2011–S2014 (2003).

    Article  CAS  Google Scholar 

  12. Villaume, A. et al. Signature of hidden order in heavy fermion superconductor URu2Si2: Resonance at the wave vector Q0=(100). Phys. Rev. B 78, 012504 (2008).

    Article  Google Scholar 

  13. Kasahara, Y. et al. Exotic superconducting properties in the electron–hole-compensated heavy-fermion semimetal URu2Si2 . Phys. Rev. Lett. 99, 116402 (2007).

    Article  CAS  Google Scholar 

  14. Yano, K. et al. Field-angle-dependent specific heat measurements and gap determination of a heavy fermion superconductor URu2Si2 . Phys. Rev. Lett. 100, 017004 (2008).

    Article  CAS  Google Scholar 

  15. Santini, P. & Amoretti, G. Crystal field model of the magnetic properties of URu2Si2 . Phys. Rev. Lett. 73, 1027–1030 (1994).

    Article  CAS  Google Scholar 

  16. Chandra, P., Coleman, P., Mydosh, J. A. & Tripathi, V. Hidden orbital order in the heavy fermion metal URu2Si2 . Nature 417, 831–834 (2002).

    Article  CAS  Google Scholar 

  17. Mineev, V. P. & Zhitomirsky, M. E. Interplay between spin-density wave and induced local moments in URu2Si2 . Phys. Rev. B 72, 014432 (2005).

    Article  Google Scholar 

  18. Kiss, A. & Fazekas, P. Group theory and octupolar order in URu2Si2 . Phys. Rev. B 71, 054415 (2005).

    Article  Google Scholar 

  19. Varma, C. M. & Zhu, L. Helicity order: Hidden order parameter in URu2Si2 . Phys. Rev. Lett. 96, 036405 (2006).

    Article  CAS  Google Scholar 

  20. Oh, Y. S. et al. Interplay between Fermi surface topology and ordering in URu2Si2 revealed through abrupt Hall coefficient changes in strong magnetic field. Phys. Rev. Lett. 98, 016401 (2007).

    Article  CAS  Google Scholar 

  21. Bonn, D. A., Garrett, J. D. & Timusk, T. Far-infrared properties of URu2Si2 . Phys. Rev. Lett. 61, 1305–1308 (1988).

    Article  CAS  Google Scholar 

  22. Behnia, K. et al. Thermal transport in the hidden-order state of URu2Si2 . Phys. Rev. Lett. 94, 156405 (2005).

    Article  CAS  Google Scholar 

  23. Wiebe, C. R. et al. Gapped itinerant spin excitations account for missing entropy in the hidden order state of URu2Si2 . Nature Phys. 3, 96–100 (2007).

    Article  CAS  Google Scholar 

  24. Janik, J. A. et al. Itinerant spin excitations near the hidden order transition in URu2Si2. Preprint at <http://arxiv.org/abs/0806.3137v2> (2008).

  25. Ohkuni, H. et al. Fermi surface properties and de Haas-van Alphen oscillation in both normal and superconducting mixed states of URu2Si2 . Phil. Mag. B 79, 1045–1077 (1999).

    CAS  Google Scholar 

  26. Yamagami, H. & Hamada, N. Relativistic electronic structure and Fermi surface of URu2Si2 in antiferromagnetic state. Physica B 284–288, 1295–1296 (2000).

    Article  Google Scholar 

  27. Ito, T. et al. Band structure and Fermi surface of URu2Si2 studied by high resolution angular-resolved photoemission spectroscopy. Phys. Rev. B 60, 13390–13395 (1999).

    Article  CAS  Google Scholar 

  28. Denlinger, J. D. et al. Comparative study of the electronic structure of XRu2Si2: Probing the Anderson lattice. J. Electron Spectrosc. Relat. Phenom. 117/118, 347–369 (2001).

    Article  Google Scholar 

  29. Mentink, S. A. M. et al. Gap formation and magnetic ordering in URu2Si2 probed by high-field magnetoresistance. Phys. Rev. B 53, R6014–R6017 (1996).

    Article  CAS  Google Scholar 

  30. Palstra, T. T. M., Menovsky, A. A. & Mydosh, J. A. Anisotropic electrical resistivity of the magnetic heavy-fermion superconductor URu2Si2 . Phys. Rev. B 33, 6527–6530 (1986).

    Article  CAS  Google Scholar 

  31. Walker, M. B. et al. Nature of the order parameter in the heavy-fermion system URu2Si2 . Phys. Rev. Lett. 71, 2630–2633 (1993).

    Article  CAS  Google Scholar 

  32. Bourdarot, F. et al. Inflection point in the magnetic field dependence of the ordered moment of URu2Si2 observed by neutron scattering in fields up to 17 T. Phys. Rev. Lett. 90, 067203 (2003).

    Article  CAS  Google Scholar 

  33. Bernhoeft, N. et al. Fragile thermodynamic order. Acta Phys. Polon. B 34, 1367–1376 (2003).

    Google Scholar 

  34. Thieme, St. et al. Itinerant antiferro- and ferro-magnetic instability in Re-doped URu2Si2: Optical and point-contact spectroscopy results. Europhys. Lett. 32, 367–372 (1995).

    Article  CAS  Google Scholar 

  35. Santini, P. et al. Field-dependent energy scales in URu2Si2 . Phys. Rev. Lett. 85, 654–657 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with R. Caciuffo, M. Biasini, G. H. Lander, N. Bernhoeft, J. Flouquet, W. J. L. Buyers, J. D. Denlinger, J. W. Allen, H. Harima, P. Coleman, P. Chandra, M.-T. Suzuki and M. B. Maple. This work was supported by the Swedish Research Council (VR), the Swedish National Infrastructure for Computing (SNIC), STINT, COST P16 and the European Commission, JRC-ITU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Elgazzar or P. M. Oppeneer.

Supplementary information

Supplementary Information

Supplementary Information (PDF 436 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Elgazzar, S., Rusz, J., Amft, M. et al. Hidden order in URu2Si2 originates from Fermi surface gapping induced by dynamic symmetry breaking. Nature Mater 8, 337–341 (2009). https://doi.org/10.1038/nmat2395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing