Abstract
Spontaneous, collective ordering of electronic degrees of freedom leads to second-order phase transitions that are characterized by an order parameter driving the transition. The notion of a ‘hidden order’ has recently been used for a variety of materials where a clear phase transition occurs without a known order parameter. The prototype example is the heavy-fermion compound URu2Si2, where a mysterious hidden-order transition occurs at 17.5 K. For more than twenty years this system has been studied theoretically and experimentally without a firm grasp of the underlying physics. Here, we provide a microscopic explanation of the hidden order using density-functional theory calculations. We identify the Fermi surface ‘hot spots’ where degeneracy induces a Fermi surface instability and quantify how symmetry breaking lifts the degeneracy, causing a surprisingly large Fermi surface gapping. As the mechanism for the hidden order, we deduce spontaneous symmetry breaking through a dynamic mode of antiferromagnetic moment excitations.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Quantum-well states at the surface of a heavy-fermion superconductor
Nature Open Access 22 March 2023
-
1D charge density wave in the hidden order state of URu2Si2
Communications Physics Open Access 14 May 2021
-
Proximity to a critical point driven by electronic entropy in URu2Si2
npj Quantum Materials Open Access 05 March 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



Change history
26 February 2009
In the version of this article initially published online, the caption for Figure 2 was incorrect; it has now been corrected on all versions of the article.
References
Palstra, T. T. M. et al. Superconducting and magnetic transitions in the heavy-fermion system URu2Si2 . Phys. Rev. Lett. 55, 2727–2730 (1985).
Schlabitz, W. et al. Superconductivity and magnetic order in a strongly interacting Fermi-system: URu2Si2 . Z. Phys. B 62, 171–177 (1986).
Maple, M. B. et al. Partially gapped Fermi surface in the heavy-fermion superconductor URu2Si2 . Phys. Rev. Lett. 56, 185–188 (1986).
Broholm, C. et al. Magnetic excitations and ordering in the heavy-electron superconductor URu2Si2 . Phys. Rev. Lett. 58, 1467–1470 (1987).
Kim, J. S., Hall, D., Kumar, P. & Steward, G. R. Specific heat of URu2Si2 in fields up 42 T: Clues to the hidden order. Phys. Rev. B 67, 014404 (2003).
Buyers, W. J. L. Low moments in heavy-fermion systems. Physica B 223/224, 9–14 (1996).
Matsuda, K. et al. Spatially inhomogeneous development of antiferromagnetism in URu2Si2: Evidence from 29Si NMR under pressure. Phys. Rev. Lett. 87, 087203 (2001).
Amitsuka, H. et al. Pressure-temperature phase diagram of the heavy-electron superconductor URu2Si2 . J. Magn. Magn. Mater. 310, 214–220 (2007).
Jeffries, J. R., Butch, N. P., Yukich, B. T. & Maple, M. B. Competing ordered phases in URu2Si2: Hydrostatic pressure and rhenium substitution. Phys. Rev. Lett. 99, 217207 (2007).
Hassinger, E. et al. Temperature-pressure phase diagram of URu2Si2 from resistivity measurements and ac calorimetry: Hidden order and Fermi-surface nesting. Phys. Rev. B 77, 115117 (2008).
Nakashima, M. et al. The de Haas-van Alphen effect in URu2Si2 under pressure. J. Phys. Condens. Matter. 15, S2011–S2014 (2003).
Villaume, A. et al. Signature of hidden order in heavy fermion superconductor URu2Si2: Resonance at the wave vector Q0=(100). Phys. Rev. B 78, 012504 (2008).
Kasahara, Y. et al. Exotic superconducting properties in the electron–hole-compensated heavy-fermion semimetal URu2Si2 . Phys. Rev. Lett. 99, 116402 (2007).
Yano, K. et al. Field-angle-dependent specific heat measurements and gap determination of a heavy fermion superconductor URu2Si2 . Phys. Rev. Lett. 100, 017004 (2008).
Santini, P. & Amoretti, G. Crystal field model of the magnetic properties of URu2Si2 . Phys. Rev. Lett. 73, 1027–1030 (1994).
Chandra, P., Coleman, P., Mydosh, J. A. & Tripathi, V. Hidden orbital order in the heavy fermion metal URu2Si2 . Nature 417, 831–834 (2002).
Mineev, V. P. & Zhitomirsky, M. E. Interplay between spin-density wave and induced local moments in URu2Si2 . Phys. Rev. B 72, 014432 (2005).
Kiss, A. & Fazekas, P. Group theory and octupolar order in URu2Si2 . Phys. Rev. B 71, 054415 (2005).
Varma, C. M. & Zhu, L. Helicity order: Hidden order parameter in URu2Si2 . Phys. Rev. Lett. 96, 036405 (2006).
Oh, Y. S. et al. Interplay between Fermi surface topology and ordering in URu2Si2 revealed through abrupt Hall coefficient changes in strong magnetic field. Phys. Rev. Lett. 98, 016401 (2007).
Bonn, D. A., Garrett, J. D. & Timusk, T. Far-infrared properties of URu2Si2 . Phys. Rev. Lett. 61, 1305–1308 (1988).
Behnia, K. et al. Thermal transport in the hidden-order state of URu2Si2 . Phys. Rev. Lett. 94, 156405 (2005).
Wiebe, C. R. et al. Gapped itinerant spin excitations account for missing entropy in the hidden order state of URu2Si2 . Nature Phys. 3, 96–100 (2007).
Janik, J. A. et al. Itinerant spin excitations near the hidden order transition in URu2Si2. Preprint at <http://arxiv.org/abs/0806.3137v2> (2008).
Ohkuni, H. et al. Fermi surface properties and de Haas-van Alphen oscillation in both normal and superconducting mixed states of URu2Si2 . Phil. Mag. B 79, 1045–1077 (1999).
Yamagami, H. & Hamada, N. Relativistic electronic structure and Fermi surface of URu2Si2 in antiferromagnetic state. Physica B 284–288, 1295–1296 (2000).
Ito, T. et al. Band structure and Fermi surface of URu2Si2 studied by high resolution angular-resolved photoemission spectroscopy. Phys. Rev. B 60, 13390–13395 (1999).
Denlinger, J. D. et al. Comparative study of the electronic structure of XRu2Si2: Probing the Anderson lattice. J. Electron Spectrosc. Relat. Phenom. 117/118, 347–369 (2001).
Mentink, S. A. M. et al. Gap formation and magnetic ordering in URu2Si2 probed by high-field magnetoresistance. Phys. Rev. B 53, R6014–R6017 (1996).
Palstra, T. T. M., Menovsky, A. A. & Mydosh, J. A. Anisotropic electrical resistivity of the magnetic heavy-fermion superconductor URu2Si2 . Phys. Rev. B 33, 6527–6530 (1986).
Walker, M. B. et al. Nature of the order parameter in the heavy-fermion system URu2Si2 . Phys. Rev. Lett. 71, 2630–2633 (1993).
Bourdarot, F. et al. Inflection point in the magnetic field dependence of the ordered moment of URu2Si2 observed by neutron scattering in fields up to 17 T. Phys. Rev. Lett. 90, 067203 (2003).
Bernhoeft, N. et al. Fragile thermodynamic order. Acta Phys. Polon. B 34, 1367–1376 (2003).
Thieme, St. et al. Itinerant antiferro- and ferro-magnetic instability in Re-doped URu2Si2: Optical and point-contact spectroscopy results. Europhys. Lett. 32, 367–372 (1995).
Santini, P. et al. Field-dependent energy scales in URu2Si2 . Phys. Rev. Lett. 85, 654–657 (2000).
Acknowledgements
We acknowledge discussions with R. Caciuffo, M. Biasini, G. H. Lander, N. Bernhoeft, J. Flouquet, W. J. L. Buyers, J. D. Denlinger, J. W. Allen, H. Harima, P. Coleman, P. Chandra, M.-T. Suzuki and M. B. Maple. This work was supported by the Swedish Research Council (VR), the Swedish National Infrastructure for Computing (SNIC), STINT, COST P16 and the European Commission, JRC-ITU.
Author information
Authors and Affiliations
Corresponding authors
Supplementary information
Supplementary Information
Supplementary Information (PDF 436 kb)
Rights and permissions
About this article
Cite this article
Elgazzar, S., Rusz, J., Amft, M. et al. Hidden order in URu2Si2 originates from Fermi surface gapping induced by dynamic symmetry breaking. Nature Mater 8, 337–341 (2009). https://doi.org/10.1038/nmat2395
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2395
This article is cited by
-
Quantum-well states at the surface of a heavy-fermion superconductor
Nature (2023)
-
1D charge density wave in the hidden order state of URu2Si2
Communications Physics (2021)
-
Proximity to a critical point driven by electronic entropy in URu2Si2
npj Quantum Materials (2021)
-
Large positive correlation between the effective electron mass and the multipolar fluctuation in the heavy-fermion metal Ce1 − x La x B6
npj Quantum Materials (2017)
-
Field-induced spin-density wave beyond hidden order in URu2Si2
Nature Communications (2016)