Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Giant superconductivity-induced modulation of the ferromagnetic magnetization in a cuprate–manganite superlattice

Abstract

Artificial multilayers offer unique opportunities for combining materials with antagonistic orders such as superconductivity and ferromagnetism and thus to realize novel quantum states1,2. In particular, oxide multilayers enable the utilization of the high superconducting transition temperature of the cuprates and the versatile magnetic properties of the colossal-magnetoresistance manganites 3,4,5,6. However, apart from exploratory work7,8,9,10, the in-depth investigation of their unusual properties has only just begun11,12,13,14,15. Here we present neutron reflectometry measurements of a [Y0.6Pr0.4Ba2Cu3O7 (10 nm)/La2/3Ca1/3MnO3 (10 nm)]10 superlattice, which reveal a surprisingly large superconductivity-induced modulation of the vertical ferromagnetic magnetization profile. Most surprisingly, this modulation seems to involve the density rather than the orientation of the magnetization and is highly susceptible to the strain, which is transmitted from the SrTiO3 substrate. We outline a possible explanation of this unusual superconductivity-induced phenomenon in terms of a phase separation between ferromagnetic and non-ferromagnetic nanodomains in the La2/3Ca1/3MnO3 layers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Temperature- and pressure-dependent magnetization data.
Figure 2: Unpolarized neutron reflectivity spectra and their modelling.
Figure 3: Polarized neutron reflectometry spectra and temperature dependence of the fractional-order- and first-order superlattice Bragg peaks.
Figure 4: Influence of the uniaxial pressure on the fractional-order Bragg peak and the structural and magnetic domains.

References

  1. Buzdin, A. I. Proximity effects in superconductor–ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005).

    CAS  Article  Google Scholar 

  2. Izyumov, Yu. A., Proshin, Yu. N. & Khusainov, M. G. Competition between superconductivity and magnetism in ferromagnet/superconductor heterostructures. Phys. Usp. 45, 109–148 (2002).

    CAS  Article  Google Scholar 

  3. Coey, J. M. D., Viret, M. & von Molnár, S. Mixed-valence magnanites. Adv. Phys. 48, 167–263 (1999).

    CAS  Article  Google Scholar 

  4. Salamon, M. B. & Jaime, M. The physics of manganites: Structure and transport. Rev. Mod. Phys. 73, 583–628 (2001).

    CAS  Article  Google Scholar 

  5. Sen, C., Alvarez, G. & Dagotto, E. Competing ferromagnetic and charge-ordered states in models for manganites: The origin of the colossal magnetoresistance effect. Phys. Rev. Lett. 98, 127202 (2007).

    Article  Google Scholar 

  6. Dagotto, E., Hotta, T. & Moreo, A. Colossal magnetoresistance materials: The key role of phase separation. Phys. Rep. 344, 1–153 (2001).

    CAS  Article  Google Scholar 

  7. Jakob, G., Moshchalkov, V. V. & Bruynseraede, Y. Superconductivity and giant negative magnetoresistance in YBa2Cu3O7/La0.67Ba0.33MnO3 superlattices. Appl. Phys. Lett. 66, 2564–2566 (1995).

    CAS  Article  Google Scholar 

  8. Przyslupski, P., Kolesnik, S., Dynowska, E., Skoskievicz, T. & Sawicki, M. Fabrication and properties of YBa2Cu3O7/RE(1−x)A(x)MnO(3−y) multilayers. IEEE Trans. Appl. Supercond. 7, 2192–2195 (1997).

    Article  Google Scholar 

  9. Habermeier, H. U. et al. Cuprate/manganite superlattices—a model system for a bulk ferromagnetic superconductor. Physica C 364/365, 298–304 (2001).

    Article  Google Scholar 

  10. Sefrioui, Z. et al. Ferromagnetic/superconducting proximity effect in La0.7Ca0.3MnO3/YBa2Cu3O7−δ superlattices. Phys. Rev. B 67, 214511 (2003).

    Article  Google Scholar 

  11. Holden, T. et al. Proximity induced metal–insulator transition in YBa2Cu3O7/La2/3Ca1/3MnO3 superlattices. Phys. Rev. B 69, 064505 (2004).

    Article  Google Scholar 

  12. Stahn, J. et al. Magnetic proximity effect in perovskite superconductor/ferromagnet multilayers. Phys. Rev. B 71, 140509(R) (2005).

    Article  Google Scholar 

  13. Peña, V. et al. Giant magnetoresistance in ferromagnet/superconductor superlattices. Phys. Rev. Lett. 94, 057002 (2005).

    Article  Google Scholar 

  14. Hoffmann, A. et al. Suppressed magnetization in La0.7Ca0.3MnO3/YBa2Cu3O7−δ superlattices. Phys. Rev. B. 72, 140407(R) (2005).

    Article  Google Scholar 

  15. Chakhalian, J. et al. Magnetism at the interface between ferromagnetic and superconducting oxides. Nature Phys. 2, 244–248 (2006).

    CAS  Article  Google Scholar 

  16. Bulaevskii, L. N., Buzdin, A. I., Kulić, M. L. & Panjukov, S. V. Coexistence of superconductivity and magnetism theoretical predictions and experimental results. Adv. Phys. 34, 175–261 (1985).

    CAS  Article  Google Scholar 

  17. Tokura, Y. & Tomioka, Y. Colossal magnetoresistive manganites. J. Magn. Magn. Mater. 200, 1–23 (1999).

    CAS  Article  Google Scholar 

  18. Hoppler, J. et al. X-ray study of structural domains in the near-surface region of SrTiO3 substrates with Y0.6Pr0.4Ba2Cu3O7/La2/3Ca1/3MnO3 superlattice grown on top. Phys. Rev. B 78, 134111 (2008).

    Article  Google Scholar 

  19. Wollan, E. O. & Koehler, W. C. Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1−x)La, xCa]MnO3 . Phys. Rev. 100, 545–563 (1955).

    CAS  Article  Google Scholar 

  20. Baladie, I. & Buzdin, A. I. Thermodynamic properties of ferromagnet/superconductor/ferromagnet nanostructures. Phys. Rev. B. 67, 014523 (2003).

    Article  Google Scholar 

  21. Pena, V. et al. Coupling of superconductors through a half-metallic ferromagnet: Evidence for a long-range proximity effect. Phys. Rev. B 69, 224502 (2004).

    Article  Google Scholar 

  22. Lake, B. et al. Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor. Nature 415, 299–302 (2002).

    CAS  Article  Google Scholar 

  23. Vlasko-Vlasov, V. K. et al. Direct magneto-optical observation of a structural phase transition in thin films of manganites. Phys. Rev. Lett. 84, 2239–2242 (2000).

    CAS  Article  Google Scholar 

  24. Lebedev, O. I., Van Tendelo, G., Amelinckx, S., Leibold, B. & Habermeier, H.-U. Structure and microstructure of La1−xCaxMnO3−δ thin films prepared by pulsed laser deposition. Phys. Rev. B 58, 8065–8074 (1998).

    CAS  Article  Google Scholar 

  25. Bernhard, C., Holden, T., Golnik, A., Lin, C. T. & Cardona, M. Far-infrared c-axis conductivity of flux-grown Y1−xPrxBa2Cu3O7 single crystals studied by spectral ellipsometry. Phys. Rev. B 62, 9138–9142 (2000).

    CAS  Article  Google Scholar 

  26. Tallon, J. L., Bernhard, C., Shaked, H., Hitterman, R. L. & Jorgensen, J. D. Generic superconducting phase-behaviour in high-Tc cuprates: Tc variation with hole concentration in YBa2Cu3O7−δ . Phys. Rev. B 51, 12911–12914 (1995).

    CAS  Article  Google Scholar 

  27. Holý, V., Pietsch, U. & Baumbach, T. High-Resolution X-Ray Scattering from Thin Films and Multilayers Vol. 149 (Springer Tracts in Modern Physics, Springer, 1999).

    Google Scholar 

  28. Daillant, J. & Gibaud, A. (eds) X-ray and Neutron Reflectivity: Principles and Applications (Lecture Notes in Physics m 58, Springer, 1999).

Download references

Acknowledgements

This work is based on experiments carried out at the Swiss spallation neutron source SINQ and the Swiss light source SLS at Paul Scherrer Institute, Villigen, Switzerland. Some of the measurements were also made at the neutron reactor of the Institute Laue Langevin, France. We acknowledge support from M. Wolff at the Institute Laue Langevin. We appreciate stimulating discussions with D. Baeriswyl, G. Khaliullin and A.F. Volkov. Work at the University of Fribourg was funded by the Schweizerische Nationalfonds zur Förderung der Wissenschaften through grants 200020-119784 and 206021-113057 and by the NCCR program MANEP.

Author information

Authors and Affiliations

Authors

Contributions

J.H., J.S., Ch.N. and C.B. carried out the neutron experiments, J.H., J.S., Ch.N., A.D., A.B. and C.B. analysed and interpreted the data and V.M., H.B., M.R., G.C., H.H. and B.K. prepared and characterized the samples.

Corresponding authors

Correspondence to J. Stahn or C. Bernhard.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1553 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hoppler, J., Stahn, J., Niedermayer, C. et al. Giant superconductivity-induced modulation of the ferromagnetic magnetization in a cuprate–manganite superlattice. Nature Mater 8, 315–319 (2009). https://doi.org/10.1038/nmat2383

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2383

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing