Abstract
A new generation of electron microscopes is able to explore the microscopic properties of materials and devices as diverse as transistors, turbine blades and interfacial superconductors. All of these systems are made up of dissimilar materials that, where they join at the atomic scale, display very different behaviour from what might be expected of the bulk materials. Advances in electron optics have enabled the imaging and spectroscopy of these buried interface states and other nanostructures with atomic resolution. Here I review the capabilities, prospects and ultimate limits for the measurement of physical and electronic properties of nanoscale structures with these new microscopes.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
International Technology Roadmap for Semiconductors. Available at <http://www.itrs.net/Links/2007ITRS/Home2007.htm> (2007).
Muller, D. A. et al. The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758–761 (1999).
Chau, R. et al. Application of high-kappa gate dielectrics and metal gate electrodes to enable silicon and non-silicon logic nanotechnology. Microelectron. Eng. 80, 1–6 (2005).
Chau, R., Doyle, B., Datta, S., Kavalieros, J. & Zhang, K. Integrated nanoelectronics for the future. Nature Mater. 6, 810–812 (2007).
Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).
Murdock, E. S., Natarajan, B. R. & Walmsley, R. G. Noise properties of multilayered Co-alloy magnetic recording media. IEEE T. Magn. 26, 2700–2705 (1990).
Dieny, B. et al. Giant magnetoresistance in soft ferromagnetic multilayers. Phys. Rev. B 43, 1297–1300 (1991).
Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room-temperature in ferromagnetic thin-film tunnel-junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).
Parkin, S. S. P. et al. Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory. J. Appl. Phys. 85, 5828–5833 (1999).
Fert, A. Origin, development, and future of spintronics (Nobel lecture). Angew. Chem. Int. Ed. 47, 5956–5967 (2008).
Midgley, P. A. M. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nature Mater. 8, 271–280 (2009).
Muller, D. A., Subramanian, S., Batson, P. E., Sass, S. L. & Silcox, J. Near atomic scale studies of electronic structure at grain boundaries in Ni3Al. Phys. Rev. Lett. 75, 4744–4747 (1995).
Schweinfest, R., Paxton, A. T. & Finnis, M. W. Bismuth embrittlement of copper is an atomic size effect. Nature 432, 1008–1011 (2004).
Lozovoi, A. Y., Paxton, A. T. & Finnis, M. W. Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first-principles calculations for copper. Phys. Rev. B 74, 155416 (2006).
Plisch, M. J., Chang, J. L., Silcox, J. & Buhrman, R. A. Atomic-scale characterization of a Co/AlOx/Co magnetic tunnel junction by scanning transmission electron microscopy. Appl. Phys. Lett. 79, 391–393 (2001).
Crewe, A. V., Wall, J. & Langmore, J. Visibility of single atoms. Science 1 68, 1338–1340 (1970).
Voyles, P. M., Muller, D. A., Grazul, J. L., Citrin, P. H. & Gossmann, H.-J. L. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826–829 (2002).
Allen, J. E. et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nature Nanotech. 3, 168–173 (2008).
Treacy, M. M. J. & Rice, S. B. Catalyst particle sizes from Rutherford scattered intensities. J. Microsc. 156, 211–234 (1989).
Nellist, P. D. & Pennycook, S. J. Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413–415 (1996).
Jia, C. L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003).
Jia, C. L., Thust, A. & Urban, K. Atomic-scale analysis of the oxygen configuration at a SrTiO3 dislocation core. Phys. Rev. Lett. 95, 225506 (2005).
Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. & Hwang, H. Y. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 . Nature 430, 657–661 (2004).
Haider, M. et al. Electron microscopy image enhanced. Nature 392, 768–769 (1998).
Krivanek, O. L., Dellby, N. & Lupini, A. R. Towards sub-angstrom electron beams. Ultramicroscopy 78, 1–11 (1999).
Krivanek, O. L., Nellist, P. D., Dellby, N., Murfitt, M. F. & Szilagyi, Z. Towards sub-0.5 Å electron beams. Ultramicroscopy 96, 229–237 (2003).
Mueller, H., Uhlemann, S., Hartel, P. & Haider, M. Advancing the hexapole Cs-corrector for the scanning transmission electron microscope. Microsc. Microanal. 12, 442–455 (2006).
Batson, P. E., Dellby, N. & Krivanek, O. L. Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002).
Kisielowski, C. et al. Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc. Microanal. 14, 469–477 (2008).
Sawada, H. et al. Achieving 63 pm resolution in scanning transmission electron microscope with spherical aberration corrector. Jpn. J. Appl Phys. 46, L568–L570 (2007).
Krivanek, O. L. et al. An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179 (2007).
Muller, D. A. et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008).
Born, M. & Wolf, E. Principles of Optics 6th edn (Pergamon, 1980).
Gabor, D. The Electron Microscope (Chemical Publishing, 1948).
Crewe, A. V. Scanning electron microscopes: is high resolution possible? Science 154, 729–738 (1966).
Isaacson, M., Kopf, D., Utlaut, M., Parker, N. W. & Crewe, A. V. Direct observations of atomic diffusion by scanning-transmission electron-microscopy. Proc. Natl Acad. Sci. USA 74, 1802–1806 (1977).
Wall, J., Langmore, J., Isaacson, M. & Crewe, A. V. Scanning-transmission electron-microscopy at high-resolution. Proc. Natl Acad. Sci. USA 7 1, 1–5 (1974).
Howie, A. Image contrast and localized signal selection techniques. J. Microsc. 17, 11–23 (1979).
Kirkland, E. J., Loane, R. F. & Silcox, J. Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 77–96 (1987).
Fertig, J. & Rose, H. Resolution and contrast of crystalline objects in high-resolution scanning-transmission electron-microscopy. Optik 59, 407–429 (1981).
Loane, R. F., Kirkland, E. J. & Silcox, J. Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark field. Acta Crystallogr. A 4 4, 912–927 (1988).
Hillyard, S. E., Loane, R. F. & Silcox, J. Annular dark-field imaging — resolution and thickness effects. Ultramicroscopy 49, 14–25 (1993).
Hillyard, S. E. & Silcox, J. Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging. Ultramicroscopy 58, 6–17 (1995).
Perovic, D. D., Rossow, C. J. & Howie, A. Imaging elastic strains in high-angle annular dark-field scanning-transmission electron microscopy. Ultramicroscopy 52, 353–359 (1993).
Hillyard, S. E. & Silcox, J. Thickness effects in ADF STEM zone-axis images. Ultramicroscopy 52, 325–334 (1993).
Xin, H. L., Intaraprasonk, V. & Muller, D. A. Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl. Phys. Lett. 92, 013125 (2008).
Voyles, P. M., Grazul, J. L. & Muller, D. A. Imaging individual atoms inside crystals with ADF–STEM. Ultramicroscopy 96, 251–273 (2003).
Scheinfein, M. & Isaacson, M. Electronic and chemical-analysis of fluoride interface structures at subnanometer spatial-resolution. J. Vac. Sci. Technol. B 4, 325–332 (1986).
Batson, P. E. Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature 366, 727–728 (1993).
Kimoto, K. et al. Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007).
Leapman, R. D., Grunes, L. A. & Fejes, P. L. Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys. Rev. B 26, 614–635 (1982).
Leapman, R. D. & Silcox, J. Orientation dependence of core edges in electron-energy-loss spectra from anisotropic materials. Phys. Rev. Lett. 42, 1361–1364 (1979).
Colliex, C. & Jouffrey, B. Inelastic-scattering of electrons in a solid by excitation of deep atomic levels. 1. Energy-loss spectra. Phil. Mag. 25, 491–511 (1972).
Muller, D. A., Singh, D. J. & Silcox, J. Connections between the electron-energy-loss spectra, the local electronic structure, and the physical properties of a material: a study of nickel aluminum alloys. Phys. Rev. B 5 7, 8181–8202 (1998).
Muller, J. E. & Wilkins, J. W. Band-structure approach to the X-ray-spectra of metals. Phys. Rev. B 29, 4331–4348 (1984).
Rez, P. & Muller, D. A. The theory and interpretation of electron energy loss near-edge fine structure. Annu. Rev. Mater. Res. 38, 535–558 (2008).
Neaton, J. R., Muller, D. A. & Ashcroft, N. W. Electronic properties of the Si/SiO2 interface from first principles. Phys. Rev. Lett. 85, 1298–1301 (2000).
de Groot, F. M. F., Fuggle, J. C., Thole, B. T. & Sawatzky, G. A. 2p X-ray absorption of 3d transition-metal compounds: an atomic multiplet description including the crystal field. Phys. Rev. B 42, 5459–5468 (1990).
Zaanen, J., Sawatzky, G. A., Fink, J., Speier, W. & Fuggle, J. C. L2,3 absorption spectra of the lighter 3d transition metals. Phys. Rev. B 32, 4905–4913 (1985).
Waddington, W. G., Rez, P., Grant, I. P. & Humphreys, C. J. White lines in the L2, 3 electron energy loss and X-ray absorption spectra of 3d transition metals. Phys. Rev. B 34, 1467–1473 (1986).
Guha, S. et al. Examination of flatband and threshold voltage tuning of HfO2/TiN field effect transistors by dielectric cap layers. Appl. Phys. Lett. 90, 092902 (2007).
Wilk, G. D. & Muller, D. A. Correlation of annealing effects on local electronic structure and macroscopic electrical properties for HfO2 deposited by atomic layer deposition. Appl. Phys. Lett. 83, 3984–3986 (2003).
Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. Nature Mater. 5, 204–209 (2006).
Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002).
Pailloux, F. et al. Nanoscale analysis of a SrTiO3/La2/3Sr1/3MnO3 interface. Phys. Rev. B 66, 014417 (2002).
Castell, M. R., Muller, D. A. & Voyles, P. M. Dopant mapping for the nanotechnology age. Nature Mater. 2, 129–131 (2003).
Scherzer, O. Über einige fehler von elektronenlinsen. Z. Phys. 1 01, 593–603 (1936).
Scherzer, O. Spharische und chromatische korrektur von elktronen-linsen. Optik 2, 114–132 (1947).
Scherzer, O. The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29 (1949).
Zach, J. & Haider, M. Correction of spherical and chromatic aberration in a low-voltage SEM. Optik 98, 112–118 (1995).
Rose, H. Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses. Nucl. Instrum. Meth. A 519, 12–27 (2004).
Bell, A. E. & Swanson, L. W. Total energy-distributions of field-emitted electrons at high-current density. Phys. Rev. B 19, 3353–3364 (1979).
Kohl, H. & Rose, H. Theory of image formation by inelastically scattered electrons in the electron microscope. Adv. Electron. El. Phys. 6 5, 173–227 (1985).
Muller, D. A. & Silcox, J. Delocalization in inelastic scattering. Ultramicroscopy 59, 195–213 (1995).
D'Alfonso, A. J., Findlay, S. D., Oxley, M. P. & Allen, L. J. Volcano structure in atomic resolution core-loss images. Ultramicroscopy 108, 677–687 (2008).
Bosman, M. et al. Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99, 086102 (2007).
Howie, A. Inelastic scattering of electrons by crystals. 1. Theory of small-angle inelastic scattering. Proc. R. Soc. A 271, 268–287 (1963).
Stallknecht, P. & Kohl, H. Computation and interpretation of contrast in crystal lattices formed by inelastically scattered electrons in a transmisson electron microscope. Ultramicroscopy 66, 261–275 (1996).
Allen, L. J., Findlay, S. D., Oxley, M. P., Witte, C. & Zaluzec, N. J. Modelling high-resolution electron microscopy based on core-loss spectroscopy. Ultramicroscopy 106, 1001–1011 (2006).
Jackson, J. D. Classical Electrodynamics (Wiley, 1976).
Cosgriff, E. C., Oxley, M. P., Allen, L. J. & Pennycook, S. J. The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope. Ultramicroscopy 102, 317–326 (2005).
Muller, D. A. & Grazul, J. Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy. J. Electron Microsc. 5 0, 219–226 (2001).
Muller, D. A. et al. Room design for high-performance electron microscopy. Ultramicroscopy 106, 1033–1040 (2006).
Tuggle, D. W., Swanson, L. W. & Gesley, M. A. Current-density distribution in a chromatically limited electron-microprobe. J. Vac. Sci. Technol. B 4, 131–134 (1986).
Bell, A. E. & Swanson, L. W. Total energy-distributions of field-emitted electrons at high-current density. Ultramicroscopy 4, 386–387 (1979).
Brink, H. A., Barfels, M. M. G., Burgner, R. P. & Edwards, B. N. A sub-50 meV spectrometer and energy filter for use in combination with 200 kV monochromated (S)TEMs. Ultramicroscopy 96, 367–384 (2003).
Mook, H. W. & Kruit, P. Construction and characterization of the fringe field monochromator for a field emission gun. Ultramicroscopy 81, 129–139 (2000).
Terauchi, M., Tanaka, M., Tsuno, K. & Ishida, M. Development of a high energy resolution electron energy-loss spectroscopy microscope. Ultramicroscopy 78, 203–209 (1999).
Tiemeijer, P. C. Measurement of Coulomb interactions in an electron beam monochromator. Ultramicroscopy 78, 53–62 (1999).
Batson, P. E. & Silcox, J. Experimental energy-loss function, Im[−1/ε(q,ω)] for aluminum. Phys. Rev. B 27, 5224–5239 (1983).
de Abajo, F. J. G. & Blanco, L. A. Electron energy loss and induced photon emission in photonic crystals. Phys. Rev. B 67, 125108 (2003).
Gu, L. et al. Band-gap measurements of direct and indirect semiconductors using monochromated electrons. Phys. Rev. B 75, 195214 (2007).
Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys. 3, 348–353 (2007).
Chen, C. H., Silcox, J. & Vincent, R. Electron energy losses in silicon, bulk and surface plasmons and Čerenkov radiation. Phys. Rev. B 12, 64–71 (1975).
de Abajo, F. J. G. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008).
Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 1, 874–881 (1957).
Egerton, R. F. Electron Energy Loss Spectroscopy in the Electron Microscope 2nd edn (Plenum, 1996).
Batson, P. E. Surface plasmon coupling in clusters of small spheres. Phys. Rev. Lett. 49, 936–940 (1982).
Stoger-Pollach, M. et al. Cerenkov losses: a limit for bandgap determination and Kramers Kronig analysis. Micron 37, 396–402 (2006).
Isaacson, M. & Utlaut, M. Comparison of electron and photon beams for determining micro-chemical environment. Optik 50, 213–234 (1978).
Spence, J. C. H. & Howells, M. R. Synchrotron soft X-ray and field-emission electron sources: a comparison. Ultramicroscopy 93, 213–222 (2002).
Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic-resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).
Breedlove, J. R. Jr & Trammell, G. T. Molecular microscopy: fundamental limitations. Science 170, 1310–1313 (1970).
Lamvik, M. K. Radiation damage in dry and frozen hydrated organic materials. J. Microsc. 161, 171–181 (1991).
Reimer, L. Transmission Electron Microscopy 2nd edn (Springer, 1989).
Medlin, D. L. & Howitt, D. G. The role of sputtering and displacement damage in the electron scribe process. Phil. Mag. Lett. 64, 133–141 (1991).
Muller, D. A. & Silcox, J. Radiation-damage of Ni3Al by 100 keV electrons. Phil. Mag. A 71, 1375–1387 (1995).
Rose, H. Criteria and prospects for realizing optimum electron microscopes. Microsc. Microanal. 13, 134–135 (2007).
Venables, J. D. & Lye, R. G. Radiation damage of ordered V6C5 by electron microscope beam bombardment. Phil. Mag. 19, 565–582 (1969).
Haider, M. et al. Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167–178 (2008).
Baumeister, W., Grimm, R. & Walz, J. Electron tomography of molecules and cells. Trends Cell Biol. 9, 81–85 (1999).
McEwen, B. F., Downing, K. H. & Glaeser, R. M. The relevance of dose-fractionation in tomography of radiation-sensitive specimens. Ultramicroscopy 60, 357–373 (1995).
Saxberg, B. E. H. & Saxton, W. O. Quantum noise in 2D projections and 3D reconstructions. Ultramicroscopy 6, 85–90 (1981).
Rose, H. in Advances in Imaging and Electron Physics Vol. 153 (ed. Hawkes, P.) (Elsevier, 2009).
Acknowledgements
This work has been supported by the Cornell Center for Materials Research, an NSF MRSEC, the Cornell Center for Nanoscale systems, an NSF NSEC, the ONR EMMA MURI and the Semiconductor Research Corporation.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Muller, D. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Mater 8, 263–270 (2009). https://doi.org/10.1038/nmat2380
Issue Date:
DOI: https://doi.org/10.1038/nmat2380
This article is cited by
-
Semiconductor Multilayer Nanometrology with Machine Learning
Nanomanufacturing and Metrology (2023)
-
Ultrastrong nanotwinned titanium alloys through additive manufacturing
Nature Materials (2022)
-
Thermal property and failure behaviors of Gd doped LaZrCeO coatings with feathery microstructure
npj Materials Degradation (2022)
-
Electron energy loss spectroscopy database synthesis and automation of core-loss edge recognition by deep-learning neural networks
Scientific Reports (2022)
-
TEM and EELS characterization of Ni–Fe layered double hydroxide decompositions caused by electron beam irradiation
npj 2D Materials and Applications (2021)