Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure and bonding at the atomic scale by scanning transmission electron microscopy

Abstract

A new generation of electron microscopes is able to explore the microscopic properties of materials and devices as diverse as transistors, turbine blades and interfacial superconductors. All of these systems are made up of dissimilar materials that, where they join at the atomic scale, display very different behaviour from what might be expected of the bulk materials. Advances in electron optics have enabled the imaging and spectroscopy of these buried interface states and other nanostructures with atomic resolution. Here I review the capabilities, prospects and ultimate limits for the measurement of physical and electronic properties of nanoscale structures with these new microscopes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Compositional imaging at the atomic scale.
Figure 2: Hardware advances in imaging microscopies.
Figure 3: Major elements of a scanning transmission electron microscope.
Figure 4: Electron energy-loss spectroscopy (EELS) as a probe of local electronic structure and composition.
Figure 5: Electron energy-loss spectrum recorded point by point across a gate stack containing a thin gate oxide.
Figure 6: Phase space for operation of a scanning electron microscope at a fixed source brightness.
Figure 7: Direct demonstration of sub-ångström resolution ADF–STEM imaging.
Figure 8: Mapping surface plasmons on a silver nanoparticle by electron energy-loss spectroscopy.

References

  1. 1

    International Technology Roadmap for Semiconductors. Available at <http://www.itrs.net/Links/2007ITRS/Home2007.htm> (2007).

  2. 2

    Muller, D. A. et al. The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758–761 (1999).

    CAS  Google Scholar 

  3. 3

    Chau, R. et al. Application of high-kappa gate dielectrics and metal gate electrodes to enable silicon and non-silicon logic nanotechnology. Microelectron. Eng. 80, 1–6 (2005).

    CAS  Google Scholar 

  4. 4

    Chau, R., Doyle, B., Datta, S., Kavalieros, J. & Zhang, K. Integrated nanoelectronics for the future. Nature Mater. 6, 810–812 (2007).

    CAS  Google Scholar 

  5. 5

    Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    CAS  Google Scholar 

  6. 6

    Murdock, E. S., Natarajan, B. R. & Walmsley, R. G. Noise properties of multilayered Co-alloy magnetic recording media. IEEE T. Magn. 26, 2700–2705 (1990).

    Google Scholar 

  7. 7

    Dieny, B. et al. Giant magnetoresistance in soft ferromagnetic multilayers. Phys. Rev. B 43, 1297–1300 (1991).

    CAS  Google Scholar 

  8. 8

    Moodera, J. S., Kinder, L. R., Wong, T. M. & Meservey, R. Large magnetoresistance at room-temperature in ferromagnetic thin-film tunnel-junctions. Phys. Rev. Lett. 74, 3273–3276 (1995).

    CAS  Google Scholar 

  9. 9

    Parkin, S. S. P. et al. Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory. J. Appl. Phys. 85, 5828–5833 (1999).

    CAS  Google Scholar 

  10. 10

    Fert, A. Origin, development, and future of spintronics (Nobel lecture). Angew. Chem. Int. Ed. 47, 5956–5967 (2008).

    CAS  Google Scholar 

  11. 11

    Midgley, P. A. M. & Dunin-Borkowski, R. E. Electron tomography and holography in materials science. Nature Mater. 8, 271–280 (2009).

    CAS  Google Scholar 

  12. 12

    Muller, D. A., Subramanian, S., Batson, P. E., Sass, S. L. & Silcox, J. Near atomic scale studies of electronic structure at grain boundaries in Ni3Al. Phys. Rev. Lett. 75, 4744–4747 (1995).

    CAS  Google Scholar 

  13. 13

    Schweinfest, R., Paxton, A. T. & Finnis, M. W. Bismuth embrittlement of copper is an atomic size effect. Nature 432, 1008–1011 (2004).

    CAS  Google Scholar 

  14. 14

    Lozovoi, A. Y., Paxton, A. T. & Finnis, M. W. Structural and chemical embrittlement of grain boundaries by impurities: a general theory and first-principles calculations for copper. Phys. Rev. B 74, 155416 (2006).

    Google Scholar 

  15. 15

    Plisch, M. J., Chang, J. L., Silcox, J. & Buhrman, R. A. Atomic-scale characterization of a Co/AlOx/Co magnetic tunnel junction by scanning transmission electron microscopy. Appl. Phys. Lett. 79, 391–393 (2001).

    CAS  Google Scholar 

  16. 16

    Crewe, A. V., Wall, J. & Langmore, J. Visibility of single atoms. Science 1 68, 1338–1340 (1970).

    Google Scholar 

  17. 17

    Voyles, P. M., Muller, D. A., Grazul, J. L., Citrin, P. H. & Gossmann, H.-J. L. Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416, 826–829 (2002).

    CAS  Google Scholar 

  18. 18

    Allen, J. E. et al. High-resolution detection of Au catalyst atoms in Si nanowires. Nature Nanotech. 3, 168–173 (2008).

    CAS  Google Scholar 

  19. 19

    Treacy, M. M. J. & Rice, S. B. Catalyst particle sizes from Rutherford scattered intensities. J. Microsc. 156, 211–234 (1989).

    CAS  Google Scholar 

  20. 20

    Nellist, P. D. & Pennycook, S. J. Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413–415 (1996).

    CAS  Google Scholar 

  21. 21

    Jia, C. L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003).

    CAS  Google Scholar 

  22. 22

    Jia, C. L., Thust, A. & Urban, K. Atomic-scale analysis of the oxygen configuration at a SrTiO3 dislocation core. Phys. Rev. Lett. 95, 225506 (2005).

    CAS  Google Scholar 

  23. 23

    Muller, D. A., Nakagawa, N., Ohtomo, A., Grazul, J. L. & Hwang, H. Y. Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 . Nature 430, 657–661 (2004).

    CAS  Google Scholar 

  24. 24

    Haider, M. et al. Electron microscopy image enhanced. Nature 392, 768–769 (1998).

    CAS  Google Scholar 

  25. 25

    Krivanek, O. L., Dellby, N. & Lupini, A. R. Towards sub-angstrom electron beams. Ultramicroscopy 78, 1–11 (1999).

    CAS  Google Scholar 

  26. 26

    Krivanek, O. L., Nellist, P. D., Dellby, N., Murfitt, M. F. & Szilagyi, Z. Towards sub-0.5 Å electron beams. Ultramicroscopy 96, 229–237 (2003).

    CAS  Google Scholar 

  27. 27

    Mueller, H., Uhlemann, S., Hartel, P. & Haider, M. Advancing the hexapole Cs-corrector for the scanning transmission electron microscope. Microsc. Microanal. 12, 442–455 (2006).

    CAS  Google Scholar 

  28. 28

    Batson, P. E., Dellby, N. & Krivanek, O. L. Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002).

    CAS  Google Scholar 

  29. 29

    Kisielowski, C. et al. Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc. Microanal. 14, 469–477 (2008).

    CAS  Google Scholar 

  30. 30

    Sawada, H. et al. Achieving 63 pm resolution in scanning transmission electron microscope with spherical aberration corrector. Jpn. J. Appl Phys. 46, L568–L570 (2007).

    CAS  Google Scholar 

  31. 31

    Krivanek, O. L. et al. An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179 (2007).

    Google Scholar 

  32. 32

    Muller, D. A. et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008).

    CAS  Google Scholar 

  33. 33

    Born, M. & Wolf, E. Principles of Optics 6th edn (Pergamon, 1980).

    Google Scholar 

  34. 34

    Gabor, D. The Electron Microscope (Chemical Publishing, 1948).

    Google Scholar 

  35. 35

    Crewe, A. V. Scanning electron microscopes: is high resolution possible? Science 154, 729–738 (1966).

    CAS  Google Scholar 

  36. 36

    Isaacson, M., Kopf, D., Utlaut, M., Parker, N. W. & Crewe, A. V. Direct observations of atomic diffusion by scanning-transmission electron-microscopy. Proc. Natl Acad. Sci. USA 74, 1802–1806 (1977).

    CAS  Google Scholar 

  37. 37

    Wall, J., Langmore, J., Isaacson, M. & Crewe, A. V. Scanning-transmission electron-microscopy at high-resolution. Proc. Natl Acad. Sci. USA 7 1, 1–5 (1974).

    Google Scholar 

  38. 38

    Howie, A. Image contrast and localized signal selection techniques. J. Microsc. 17, 11–23 (1979).

    Google Scholar 

  39. 39

    Kirkland, E. J., Loane, R. F. & Silcox, J. Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 77–96 (1987).

    Google Scholar 

  40. 40

    Fertig, J. & Rose, H. Resolution and contrast of crystalline objects in high-resolution scanning-transmission electron-microscopy. Optik 59, 407–429 (1981).

    CAS  Google Scholar 

  41. 41

    Loane, R. F., Kirkland, E. J. & Silcox, J. Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark field. Acta Crystallogr. A 4 4, 912–927 (1988).

    Google Scholar 

  42. 42

    Hillyard, S. E., Loane, R. F. & Silcox, J. Annular dark-field imaging — resolution and thickness effects. Ultramicroscopy 49, 14–25 (1993).

    CAS  Google Scholar 

  43. 43

    Hillyard, S. E. & Silcox, J. Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging. Ultramicroscopy 58, 6–17 (1995).

    CAS  Google Scholar 

  44. 44

    Perovic, D. D., Rossow, C. J. & Howie, A. Imaging elastic strains in high-angle annular dark-field scanning-transmission electron microscopy. Ultramicroscopy 52, 353–359 (1993).

    CAS  Google Scholar 

  45. 45

    Hillyard, S. E. & Silcox, J. Thickness effects in ADF STEM zone-axis images. Ultramicroscopy 52, 325–334 (1993).

    CAS  Google Scholar 

  46. 46

    Xin, H. L., Intaraprasonk, V. & Muller, D. A. Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl. Phys. Lett. 92, 013125 (2008).

    Google Scholar 

  47. 47

    Voyles, P. M., Grazul, J. L. & Muller, D. A. Imaging individual atoms inside crystals with ADF–STEM. Ultramicroscopy 96, 251–273 (2003).

    CAS  Google Scholar 

  48. 48

    Scheinfein, M. & Isaacson, M. Electronic and chemical-analysis of fluoride interface structures at subnanometer spatial-resolution. J. Vac. Sci. Technol. B 4, 325–332 (1986).

    Google Scholar 

  49. 49

    Batson, P. E. Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature 366, 727–728 (1993).

    CAS  Google Scholar 

  50. 50

    Kimoto, K. et al. Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702–704 (2007).

    CAS  Google Scholar 

  51. 51

    Leapman, R. D., Grunes, L. A. & Fejes, P. L. Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys. Rev. B 26, 614–635 (1982).

    CAS  Google Scholar 

  52. 52

    Leapman, R. D. & Silcox, J. Orientation dependence of core edges in electron-energy-loss spectra from anisotropic materials. Phys. Rev. Lett. 42, 1361–1364 (1979).

    CAS  Google Scholar 

  53. 53

    Colliex, C. & Jouffrey, B. Inelastic-scattering of electrons in a solid by excitation of deep atomic levels. 1. Energy-loss spectra. Phil. Mag. 25, 491–511 (1972).

    CAS  Google Scholar 

  54. 54

    Muller, D. A., Singh, D. J. & Silcox, J. Connections between the electron-energy-loss spectra, the local electronic structure, and the physical properties of a material: a study of nickel aluminum alloys. Phys. Rev. B 5 7, 8181–8202 (1998).

    Google Scholar 

  55. 55

    Muller, J. E. & Wilkins, J. W. Band-structure approach to the X-ray-spectra of metals. Phys. Rev. B 29, 4331–4348 (1984).

    Google Scholar 

  56. 56

    Rez, P. & Muller, D. A. The theory and interpretation of electron energy loss near-edge fine structure. Annu. Rev. Mater. Res. 38, 535–558 (2008).

    CAS  Google Scholar 

  57. 57

    Neaton, J. R., Muller, D. A. & Ashcroft, N. W. Electronic properties of the Si/SiO2 interface from first principles. Phys. Rev. Lett. 85, 1298–1301 (2000).

    CAS  Google Scholar 

  58. 58

    de Groot, F. M. F., Fuggle, J. C., Thole, B. T. & Sawatzky, G. A. 2p X-ray absorption of 3d transition-metal compounds: an atomic multiplet description including the crystal field. Phys. Rev. B 42, 5459–5468 (1990).

    CAS  Google Scholar 

  59. 59

    Zaanen, J., Sawatzky, G. A., Fink, J., Speier, W. & Fuggle, J. C. L2,3 absorption spectra of the lighter 3d transition metals. Phys. Rev. B 32, 4905–4913 (1985).

    CAS  Google Scholar 

  60. 60

    Waddington, W. G., Rez, P., Grant, I. P. & Humphreys, C. J. White lines in the L2, 3 electron energy loss and X-ray absorption spectra of 3d transition metals. Phys. Rev. B 34, 1467–1473 (1986).

    CAS  Google Scholar 

  61. 61

    Guha, S. et al. Examination of flatband and threshold voltage tuning of HfO2/TiN field effect transistors by dielectric cap layers. Appl. Phys. Lett. 90, 092902 (2007).

    Google Scholar 

  62. 62

    Wilk, G. D. & Muller, D. A. Correlation of annealing effects on local electronic structure and macroscopic electrical properties for HfO2 deposited by atomic layer deposition. Appl. Phys. Lett. 83, 3984–3986 (2003).

    CAS  Google Scholar 

  63. 63

    Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. Nature Mater. 5, 204–209 (2006).

    CAS  Google Scholar 

  64. 64

    Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002).

    CAS  Google Scholar 

  65. 65

    Pailloux, F. et al. Nanoscale analysis of a SrTiO3/La2/3Sr1/3MnO3 interface. Phys. Rev. B 66, 014417 (2002).

    Google Scholar 

  66. 66

    Castell, M. R., Muller, D. A. & Voyles, P. M. Dopant mapping for the nanotechnology age. Nature Mater. 2, 129–131 (2003).

    CAS  Google Scholar 

  67. 67

    Scherzer, O. Über einige fehler von elektronenlinsen. Z. Phys. 1 01, 593–603 (1936).

    Google Scholar 

  68. 68

    Scherzer, O. Spharische und chromatische korrektur von elktronen-linsen. Optik 2, 114–132 (1947).

    CAS  Google Scholar 

  69. 69

    Scherzer, O. The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29 (1949).

    CAS  Google Scholar 

  70. 70

    Zach, J. & Haider, M. Correction of spherical and chromatic aberration in a low-voltage SEM. Optik 98, 112–118 (1995).

    Google Scholar 

  71. 71

    Rose, H. Outline of an ultracorrector compensating for all primary chromatic and geometrical aberrations of charged-particle lenses. Nucl. Instrum. Meth. A 519, 12–27 (2004).

    CAS  Google Scholar 

  72. 72

    Bell, A. E. & Swanson, L. W. Total energy-distributions of field-emitted electrons at high-current density. Phys. Rev. B 19, 3353–3364 (1979).

    CAS  Google Scholar 

  73. 73

    Kohl, H. & Rose, H. Theory of image formation by inelastically scattered electrons in the electron microscope. Adv. Electron. El. Phys. 6 5, 173–227 (1985).

    Google Scholar 

  74. 74

    Muller, D. A. & Silcox, J. Delocalization in inelastic scattering. Ultramicroscopy 59, 195–213 (1995).

    CAS  Google Scholar 

  75. 75

    D'Alfonso, A. J., Findlay, S. D., Oxley, M. P. & Allen, L. J. Volcano structure in atomic resolution core-loss images. Ultramicroscopy 108, 677–687 (2008).

    CAS  Google Scholar 

  76. 76

    Bosman, M. et al. Two-dimensional mapping of chemical information at atomic resolution. Phys. Rev. Lett. 99, 086102 (2007).

    CAS  Google Scholar 

  77. 77

    Howie, A. Inelastic scattering of electrons by crystals. 1. Theory of small-angle inelastic scattering. Proc. R. Soc. A 271, 268–287 (1963).

    CAS  Google Scholar 

  78. 78

    Stallknecht, P. & Kohl, H. Computation and interpretation of contrast in crystal lattices formed by inelastically scattered electrons in a transmisson electron microscope. Ultramicroscopy 66, 261–275 (1996).

    CAS  Google Scholar 

  79. 79

    Allen, L. J., Findlay, S. D., Oxley, M. P., Witte, C. & Zaluzec, N. J. Modelling high-resolution electron microscopy based on core-loss spectroscopy. Ultramicroscopy 106, 1001–1011 (2006).

    CAS  Google Scholar 

  80. 80

    Jackson, J. D. Classical Electrodynamics (Wiley, 1976).

    Google Scholar 

  81. 81

    Cosgriff, E. C., Oxley, M. P., Allen, L. J. & Pennycook, S. J. The spatial resolution of imaging using core-loss spectroscopy in the scanning transmission electron microscope. Ultramicroscopy 102, 317–326 (2005).

    CAS  Google Scholar 

  82. 82

    Muller, D. A. & Grazul, J. Optimizing the environment for sub-0.2 nm scanning transmission electron microscopy. J. Electron Microsc. 5 0, 219–226 (2001).

    Google Scholar 

  83. 83

    Muller, D. A. et al. Room design for high-performance electron microscopy. Ultramicroscopy 106, 1033–1040 (2006).

    CAS  Google Scholar 

  84. 84

    Tuggle, D. W., Swanson, L. W. & Gesley, M. A. Current-density distribution in a chromatically limited electron-microprobe. J. Vac. Sci. Technol. B 4, 131–134 (1986).

    Google Scholar 

  85. 85

    Bell, A. E. & Swanson, L. W. Total energy-distributions of field-emitted electrons at high-current density. Ultramicroscopy 4, 386–387 (1979).

    Google Scholar 

  86. 86

    Brink, H. A., Barfels, M. M. G., Burgner, R. P. & Edwards, B. N. A sub-50 meV spectrometer and energy filter for use in combination with 200 kV monochromated (S)TEMs. Ultramicroscopy 96, 367–384 (2003).

    CAS  Google Scholar 

  87. 87

    Mook, H. W. & Kruit, P. Construction and characterization of the fringe field monochromator for a field emission gun. Ultramicroscopy 81, 129–139 (2000).

    CAS  Google Scholar 

  88. 88

    Terauchi, M., Tanaka, M., Tsuno, K. & Ishida, M. Development of a high energy resolution electron energy-loss spectroscopy microscope. Ultramicroscopy 78, 203–209 (1999).

    Google Scholar 

  89. 89

    Tiemeijer, P. C. Measurement of Coulomb interactions in an electron beam monochromator. Ultramicroscopy 78, 53–62 (1999).

    CAS  Google Scholar 

  90. 90

    Batson, P. E. & Silcox, J. Experimental energy-loss function, Im[−1/ε(q,ω)] for aluminum. Phys. Rev. B 27, 5224–5239 (1983).

    CAS  Google Scholar 

  91. 91

    de Abajo, F. J. G. & Blanco, L. A. Electron energy loss and induced photon emission in photonic crystals. Phys. Rev. B 67, 125108 (2003).

    Google Scholar 

  92. 92

    Gu, L. et al. Band-gap measurements of direct and indirect semiconductors using monochromated electrons. Phys. Rev. B 75, 195214 (2007).

    Google Scholar 

  93. 93

    Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys. 3, 348–353 (2007).

    CAS  Google Scholar 

  94. 94

    Chen, C. H., Silcox, J. & Vincent, R. Electron energy losses in silicon, bulk and surface plasmons and Čerenkov radiation. Phys. Rev. B 12, 64–71 (1975).

    CAS  Google Scholar 

  95. 95

    de Abajo, F. J. G. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008).

    Google Scholar 

  96. 96

    Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 1, 874–881 (1957).

    Google Scholar 

  97. 97

    Egerton, R. F. Electron Energy Loss Spectroscopy in the Electron Microscope 2nd edn (Plenum, 1996).

    Google Scholar 

  98. 98

    Batson, P. E. Surface plasmon coupling in clusters of small spheres. Phys. Rev. Lett. 49, 936–940 (1982).

    CAS  Google Scholar 

  99. 99

    Stoger-Pollach, M. et al. Cerenkov losses: a limit for bandgap determination and Kramers Kronig analysis. Micron 37, 396–402 (2006).

    CAS  Google Scholar 

  100. 100

    Isaacson, M. & Utlaut, M. Comparison of electron and photon beams for determining micro-chemical environment. Optik 50, 213–234 (1978).

    CAS  Google Scholar 

  101. 101

    Spence, J. C. H. & Howells, M. R. Synchrotron soft X-ray and field-emission electron sources: a comparison. Ultramicroscopy 93, 213–222 (2002).

    CAS  Google Scholar 

  102. 102

    Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic-resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171–193 (1995).

    CAS  Google Scholar 

  103. 103

    Breedlove, J. R. Jr & Trammell, G. T. Molecular microscopy: fundamental limitations. Science 170, 1310–1313 (1970).

    CAS  Google Scholar 

  104. 104

    Lamvik, M. K. Radiation damage in dry and frozen hydrated organic materials. J. Microsc. 161, 171–181 (1991).

    Google Scholar 

  105. 105

    Reimer, L. Transmission Electron Microscopy 2nd edn (Springer, 1989).

    Google Scholar 

  106. 106

    Medlin, D. L. & Howitt, D. G. The role of sputtering and displacement damage in the electron scribe process. Phil. Mag. Lett. 64, 133–141 (1991).

    Google Scholar 

  107. 107

    Muller, D. A. & Silcox, J. Radiation-damage of Ni3Al by 100 keV electrons. Phil. Mag. A 71, 1375–1387 (1995).

    CAS  Google Scholar 

  108. 108

    Rose, H. Criteria and prospects for realizing optimum electron microscopes. Microsc. Microanal. 13, 134–135 (2007).

    Google Scholar 

  109. 109

    Venables, J. D. & Lye, R. G. Radiation damage of ordered V6C5 by electron microscope beam bombardment. Phil. Mag. 19, 565–582 (1969).

    CAS  Google Scholar 

  110. 110

    Haider, M. et al. Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167–178 (2008).

    CAS  Google Scholar 

  111. 111

    Baumeister, W., Grimm, R. & Walz, J. Electron tomography of molecules and cells. Trends Cell Biol. 9, 81–85 (1999).

    CAS  Google Scholar 

  112. 112

    McEwen, B. F., Downing, K. H. & Glaeser, R. M. The relevance of dose-fractionation in tomography of radiation-sensitive specimens. Ultramicroscopy 60, 357–373 (1995).

    CAS  Google Scholar 

  113. 113

    Saxberg, B. E. H. & Saxton, W. O. Quantum noise in 2D projections and 3D reconstructions. Ultramicroscopy 6, 85–90 (1981).

    Google Scholar 

  114. 114

    Rose, H. in Advances in Imaging and Electron Physics Vol. 153 (ed. Hawkes, P.) (Elsevier, 2009).

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Cornell Center for Materials Research, an NSF MRSEC, the Cornell Center for Nanoscale systems, an NSF NSEC, the ONR EMMA MURI and the Semiconductor Research Corporation.

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muller, D. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Mater 8, 263–270 (2009). https://doi.org/10.1038/nmat2380

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing