Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface


Magnetic atoms at surfaces are a rich model system for solid-state magnetic bits exhibiting either classical1,2 or quantum3,4 behaviour. Individual atoms, however, are difficult to arrange in regular patterns1,2,3,4,5. Moreover, their magnetic properties are dominated by interaction with the substrate, which, as in the case of Kondo systems, often leads to a decrease or quench of their local magnetic moment6,7. Here, we show that the supramolecular assembly of Fe and 1,4-benzenedicarboxylic acid molecules on a Cu surface results in ordered arrays of high-spin mononuclear Fe centres on a 1.5 nm square grid. Lateral coordination with the molecular ligands yields unsaturated yet stable coordination bonds, which enable chemical modification of the electronic and magnetic properties of the Fe atoms independently from the substrate. The easy magnetization direction of the Fe centres can be switched by oxygen adsorption, thus opening a way to control the magnetic anisotropy in supramolecular layers akin to that used in metallic thin films8,9,10,11.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Planar supramolecular layers of Fe–TPA complexes self-assembled on Cu(100).
Figure 2: Circularly polarized X-ray absorption spectra of Fe(TPA)4, O2–Fe(TPA)4 and Fe/Cu(100) measured at the Fe L2,3-edge and calculated multiplet structure.
Figure 3: Element-selective magnetization curves of the Fe centres and crystal-field diagrams.


  1. Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003).

    Article  CAS  Google Scholar 

  2. Meier, F., Zhou, L., Wiebe, J. & Wiesendanger, R. Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82–86 (2008).

    Article  CAS  Google Scholar 

  3. Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).

    Article  CAS  Google Scholar 

  4. Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007).

    Article  CAS  Google Scholar 

  5. Eigler, D. M. & Schweitzer, E. K. Positioning single atoms with a scanning electron microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  6. Nagaoka, T., Jamneala, T., Grobis, M. & Crommie, M. F. Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 88, 077205 (2002).

    Article  CAS  Google Scholar 

  7. Wahl, P. et al. Kondo effect of molecular complexes at surfaces: Ligand control of the local spin coupling. Phys. Rev. Lett. 95, 166601 (2005).

    Article  CAS  Google Scholar 

  8. Monso, S. et al. Crossover from in-plane to perpendicular anisotropy in Pt/CoFe/AlOx sandwiches as a function of Al oxidation: A very accurate control of the oxidation of tunnel barriers. Appl. Phys. Lett. 80, 4157–4159 (2002).

    Article  CAS  Google Scholar 

  9. Hong, J., Wu, R. Q., Lindner, J., Kosubek, E. & Baberschke, K. Manipulation of spin reorientation transition by oxygen surfactant growth: A combined theoretical and experimental approach. Phys. Rev. Lett. 92, 147202 (2004).

    Article  Google Scholar 

  10. Sander, D. et al. Reversible H-induced switching of the magnetic easy axis in Ni/Cu(001) thin films. Phys. Rev. Lett. 93, 247203 (2004).

    Article  CAS  Google Scholar 

  11. Peterka, D., Enders, A., Haas, G. & Kern, K. Adsorbate and thermally induced spin reorientation transition in low-temperature-grown Fe/Cu(001). Phys. Rev. B 66, 104411 (2002).

    Article  Google Scholar 

  12. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  CAS  Google Scholar 

  13. Naber, W. J. M., Faez, S. & van der Wiel, W. G. Organic spintronics. J. Phys. D 40, R205–R228 (2007).

    Article  CAS  Google Scholar 

  14. Parkin, S. S. P. et al. Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661–680 (2003).

    Article  CAS  Google Scholar 

  15. Fukuzawa, H. et al. Specular spin-valve films with an FeCo nano-oxide layer by ion-assisted oxidation. J. Appl. Phys. 91, 6684–6690 (2002).

    Article  CAS  Google Scholar 

  16. Scheybal, A. et al. Induced magnetic ordering in a molecular monolayer. Chem. Phys. Lett. 411, 214–220 (2005).

    Article  CAS  Google Scholar 

  17. Wende, H. et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nature Mater. 6, 516–520 (2007).

    Article  CAS  Google Scholar 

  18. Atodiresei, N. et al. Controlling the magnetization direction in molecules via their oxidation state. Phys. Rev. Lett. 100, 117207 (2008).

    Article  CAS  Google Scholar 

  19. Ruben, M., Rojo, J., Romero-Salguero, F. J., Uppadine, L. H. & Lehn, J.-M. Grid-type metal ion architectures: Functional metallosupramolecular arrays. Angew. Chem. Int. Ed. 43, 3644–3662 (2004).

    Article  CAS  Google Scholar 

  20. Stepanow, S. et al. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nature Mater. 3, 229–233 (2004).

    Article  CAS  Google Scholar 

  21. Semenov, A. et al. Controlled arrangement of supramolecular metal coordination arrays on surfaces. Angew. Chem. Int. Ed. 38, 2547–2550 (1999).

    Article  CAS  Google Scholar 

  22. Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    Article  CAS  Google Scholar 

  23. Lingenfelder, M. A. et al. Towards surface-supported supramolecular architectures: Tailored coordination assembly of 1,4-benzenedicarboxylate and Fe on Cu(100). Chem. Eur. J. 10, 1913–1919 (2004).

    Article  CAS  Google Scholar 

  24. Stepanow, S., Lin, N. & Barth, J. V. Modular assembly of low-dimensional coordination architectures on metal surfaces. J. Phys. Condens. Matter 20, 184002 (2008).

    Article  Google Scholar 

  25. de Groot, F. & Kotani, A. Core Level Spectroscopy of Solids (CRC Press, 2008).

    Book  Google Scholar 

  26. Gambardella, P. et al. Localized magnetic states of Fe, Co, and Ni impurities on alkali metal films. Phys. Rev. Lett. 88, 047202 (2002).

    Article  CAS  Google Scholar 

  27. Hocking, R. K. et al. Fe L-edge X-ray absorption spectroscopy of low-spin heme relative to non-heme Fe complexes: Delocalization of Fe d-electrons into the porphyrin ligand. J. Am. Chem. Soc. 129, 113–125 (2007).

    Article  CAS  Google Scholar 

  28. Figgis, B. N. & Hitchman, M. A. Ligand Field Theory and Its Applications (Wiley–VCH, 2000).

    Google Scholar 

  29. Rocha, A. R. et al. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).

    Article  CAS  Google Scholar 

  30. Timm, C. & Elste, F. Spin amplification, reading, and writing in transport through anisotropic magnetic molecules. Phys. Rev. B 73, 235304 (2006).

    Article  Google Scholar 

Download references


We acknowledge the ESRF for provision of beam time. Partial financial support was received through the EUROCORES 05-SONS-FP-009 SANMAG project of the European Science Foundation. P.G. and S.S. acknowledge financial support from the Spanish Ministerio de Educación y Ciencia (SYNSPIN—MAT2007-62341).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pietro Gambardella.

Supplementary information

Supplementary Information

Supplementary Information (PDF 476 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gambardella, P., Stepanow, S., Dmitriev, A. et al. Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface. Nature Mater 8, 189–193 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing