Abstract
Magnetic atoms at surfaces are a rich model system for solid-state magnetic bits exhibiting either classical1,2 or quantum3,4 behaviour. Individual atoms, however, are difficult to arrange in regular patterns1,2,3,4,5. Moreover, their magnetic properties are dominated by interaction with the substrate, which, as in the case of Kondo systems, often leads to a decrease or quench of their local magnetic moment6,7. Here, we show that the supramolecular assembly of Fe and 1,4-benzenedicarboxylic acid molecules on a Cu surface results in ordered arrays of high-spin mononuclear Fe centres on a 1.5 nm square grid. Lateral coordination with the molecular ligands yields unsaturated yet stable coordination bonds, which enable chemical modification of the electronic and magnetic properties of the Fe atoms independently from the substrate. The easy magnetization direction of the Fe centres can be switched by oxygen adsorption, thus opening a way to control the magnetic anisotropy in supramolecular layers akin to that used in metallic thin films8,9,10,11.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Gambardella, P. et al. Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300, 1130–1133 (2003).
Meier, F., Zhou, L., Wiebe, J. & Wiesendanger, R. Revealing magnetic interactions from single-atom magnetization curves. Science 320, 82–86 (2008).
Heinrich, A. J., Gupta, J. A., Lutz, C. P. & Eigler, D. M. Single-atom spin-flip spectroscopy. Science 306, 466–469 (2004).
Hirjibehedin, C. F. et al. Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network. Science 317, 1199–1203 (2007).
Eigler, D. M. & Schweitzer, E. K. Positioning single atoms with a scanning electron microscope. Nature 344, 524–526 (1990).
Nagaoka, T., Jamneala, T., Grobis, M. & Crommie, M. F. Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 88, 077205 (2002).
Wahl, P. et al. Kondo effect of molecular complexes at surfaces: Ligand control of the local spin coupling. Phys. Rev. Lett. 95, 166601 (2005).
Monso, S. et al. Crossover from in-plane to perpendicular anisotropy in Pt/CoFe/AlOx sandwiches as a function of Al oxidation: A very accurate control of the oxidation of tunnel barriers. Appl. Phys. Lett. 80, 4157–4159 (2002).
Hong, J., Wu, R. Q., Lindner, J., Kosubek, E. & Baberschke, K. Manipulation of spin reorientation transition by oxygen surfactant growth: A combined theoretical and experimental approach. Phys. Rev. Lett. 92, 147202 (2004).
Sander, D. et al. Reversible H-induced switching of the magnetic easy axis in Ni/Cu(001) thin films. Phys. Rev. Lett. 93, 247203 (2004).
Peterka, D., Enders, A., Haas, G. & Kern, K. Adsorbate and thermally induced spin reorientation transition in low-temperature-grown Fe/Cu(001). Phys. Rev. B 66, 104411 (2002).
Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).
Naber, W. J. M., Faez, S. & van der Wiel, W. G. Organic spintronics. J. Phys. D 40, R205–R228 (2007).
Parkin, S. S. P. et al. Magnetically engineered spintronic sensors and memory. Proc. IEEE 91, 661–680 (2003).
Fukuzawa, H. et al. Specular spin-valve films with an FeCo nano-oxide layer by ion-assisted oxidation. J. Appl. Phys. 91, 6684–6690 (2002).
Scheybal, A. et al. Induced magnetic ordering in a molecular monolayer. Chem. Phys. Lett. 411, 214–220 (2005).
Wende, H. et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nature Mater. 6, 516–520 (2007).
Atodiresei, N. et al. Controlling the magnetization direction in molecules via their oxidation state. Phys. Rev. Lett. 100, 117207 (2008).
Ruben, M., Rojo, J., Romero-Salguero, F. J., Uppadine, L. H. & Lehn, J.-M. Grid-type metal ion architectures: Functional metallosupramolecular arrays. Angew. Chem. Int. Ed. 43, 3644–3662 (2004).
Stepanow, S. et al. Steering molecular organization and host–guest interactions using two-dimensional nanoporous coordination systems. Nature Mater. 3, 229–233 (2004).
Semenov, A. et al. Controlled arrangement of supramolecular metal coordination arrays on surfaces. Angew. Chem. Int. Ed. 38, 2547–2550 (1999).
Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).
Lingenfelder, M. A. et al. Towards surface-supported supramolecular architectures: Tailored coordination assembly of 1,4-benzenedicarboxylate and Fe on Cu(100). Chem. Eur. J. 10, 1913–1919 (2004).
Stepanow, S., Lin, N. & Barth, J. V. Modular assembly of low-dimensional coordination architectures on metal surfaces. J. Phys. Condens. Matter 20, 184002 (2008).
de Groot, F. & Kotani, A. Core Level Spectroscopy of Solids (CRC Press, 2008).
Gambardella, P. et al. Localized magnetic states of Fe, Co, and Ni impurities on alkali metal films. Phys. Rev. Lett. 88, 047202 (2002).
Hocking, R. K. et al. Fe L-edge X-ray absorption spectroscopy of low-spin heme relative to non-heme Fe complexes: Delocalization of Fe d-electrons into the porphyrin ligand. J. Am. Chem. Soc. 129, 113–125 (2007).
Figgis, B. N. & Hitchman, M. A. Ligand Field Theory and Its Applications (Wiley–VCH, 2000).
Rocha, A. R. et al. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).
Timm, C. & Elste, F. Spin amplification, reading, and writing in transport through anisotropic magnetic molecules. Phys. Rev. B 73, 235304 (2006).
Acknowledgements
We acknowledge the ESRF for provision of beam time. Partial financial support was received through the EUROCORES 05-SONS-FP-009 SANMAG project of the European Science Foundation. P.G. and S.S. acknowledge financial support from the Spanish Ministerio de Educación y Ciencia (SYNSPIN—MAT2007-62341).
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary Information (PDF 476 kb)
Rights and permissions
About this article
Cite this article
Gambardella, P., Stepanow, S., Dmitriev, A. et al. Supramolecular control of the magnetic anisotropy in two-dimensional high-spin Fe arrays at a metal interface. Nature Mater 8, 189–193 (2009). https://doi.org/10.1038/nmat2376
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2376
This article is cited by
-
Pyridine-induced interfacial structural transformation of tetraphenylethylene derivatives investigated by scanning tunneling microscopy
Nano Research (2018)
-
Long-range magnetic coupling between nanoscale organic–metal hybrids mediated by a nanoskyrmion lattice
Nature Nanotechnology (2014)
-
Steric and electronic selectivity in the synthesis of Fe-1,2,4,5-tetracyanobenzene (TCNB) complexes on Au(111): From topological confinement to bond formation
Nano Research (2014)
-
Interface-engineered templates for molecular spin memory devices
Nature (2013)
-
Bio-inspired nanocatalysts for the oxygen reduction reaction
Nature Communications (2013)