Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Magnetic memory of a single-molecule quantum magnet wired to a gold surface


In the field of molecular spintronics1, the use of magnetic molecules for information technology is a main target and the observation of magnetic hysteresis on individual molecules organized on surfaces is a necessary step to develop molecular memory arrays. Although simple paramagnetic molecules can show surface-induced magnetic ordering and hysteresis when deposited on ferromagnetic surfaces2, information storage at the molecular level requires molecules exhibiting an intrinsic remnant magnetization, like the so-called single-molecule magnets3 (SMMs). These have been intensively investigated for their rich quantum behaviour4 but no magnetic hysteresis has been so far reported for monolayers of SMMs on various non-magnetic substrates, most probably owing to the chemical instability of clusters on surfaces5. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism synchrotron-based techniques, pushed to the limits in sensitivity and operated at sub-kelvin temperatures, we have now found that robust, tailor-made Fe4 complexes retain magnetic hysteresis at gold surfaces. Our results demonstrate that isolated SMMs can be used for storing information. The road is now open to address individual molecules wired to a conducting surface6,7 in their blocked magnetization state, thereby enabling investigation of the elementary interactions between electron transport and magnetism degrees of freedom at the molecular scale8,9.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Monolayer of Fe4 on gold.
Figure 2: XAS/XMCD of Fe4 monolayer.
Figure 3: Hysteresis and magnetization dynamics of Fe4 monolayer.


  1. Rocha, A. R. et al. Towards molecular spintronics. Nature Mater. 4, 335–339 (2005).

    Article  CAS  Google Scholar 

  2. Wende, H. et al. Substrate-induced magnetic ordering and switching of iron porphyrin molecules. Nature Mater. 6, 516–520 (2007).

    Article  CAS  Google Scholar 

  3. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

    Article  CAS  Google Scholar 

  4. Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2006).

    Book  Google Scholar 

  5. Mannini, M. et al. XAS and XMCD investigation of Mn12 monolayers on gold. Chem. Eur. J. 14, 7530–7535 (2008).

    Article  CAS  Google Scholar 

  6. Heersche, H. B. et al. Electron transport through single Mn12 molecular magnets. Phys. Rev. Lett. 96, 206801 (2006).

    Article  CAS  Google Scholar 

  7. Jo, M. H. et al. Signatures of molecular magnetism in single-molecule transport spectroscopy. Nano Lett. 6, 2014–2020 (2006).

    Article  CAS  Google Scholar 

  8. Kim, G. H. & Kim, T. S. Electronic transport in single-molecule magnets on metallic surfaces. Phys. Rev. Lett. 92, 137203 (2004).

    Article  Google Scholar 

  9. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nature Mater. 7, 179–186 (2008).

    Article  CAS  Google Scholar 

  10. Ziemelis, K. Nature Milestones Spin, Milestone 22: (1996) Mesoscopic tunnelling of magnetization (10.1038/nphys877).

  11. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    Article  CAS  Google Scholar 

  12. Wiesendanger, R. Scanning Probe Microscopy and Spectroscopy Methods and Applications (Cambridge Univ. Press, 1994).

    Book  Google Scholar 

  13. Cornia, A. et al. Preparation of novel materials using SMMs. Struct. Bond. 122, 133–161 (2006).

    Article  CAS  Google Scholar 

  14. Madhavan, V., Chen, W., Jamneala, T., Crommie, M. F. & Wingreen, N. S. Tunneling into a single magnetic atom: Spectroscopic evidence of the Kondo resonance. Science 280, 567–569 (1998).

    Article  CAS  Google Scholar 

  15. Heinze, S. et al. Real-space imaging of two-dimensional antiferromagnetism on the atomic scale. Science 288, 1805–1808 (2000).

    Article  CAS  Google Scholar 

  16. Hirjibehedin, C. F., Lutz, C. P. & Heinrich, A. J. Spin coupling in engineered atomic structures. Science 312, 1021–1024 (2006).

    Article  CAS  Google Scholar 

  17. Zhao, A. et al. Controlling the Kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 309, 1542–1544 (2005).

    Article  CAS  Google Scholar 

  18. Durkan, C. & Welland, M. E. Electronic spin detection in molecules using scanning-tunneling-microscopy-assisted electron-spin resonance. Appl. Phys. Lett. 80, 458–460 (2002).

    Article  CAS  Google Scholar 

  19. Iacovita, C. et al. Visualizing the spin of individual cobalt-phthalocyanine molecules. Phys. Rev. Lett. 101, 116602 (2008).

    Article  CAS  Google Scholar 

  20. Mannini, M. et al. X-ray magnetic circular dichroism picks out single-molecule magnets suitable for nanodevices. Adv. Mater. 21, 167–171 (2009).

    Article  Google Scholar 

  21. Stöhr, J. Exploring the microscopic origin of magnetic anisotropies with x-ray magnetic circular dichroism (XMCD) spectroscopy. J. Magn. Magn. Mater. 200, 470–497 (1999).

    Article  Google Scholar 

  22. Gambardella, P. et al. Ferromagnetism in one-dimensional monoatomic metal chains. Nature 416, 301–304 (2002).

    Article  CAS  Google Scholar 

  23. Cornia, A. et al. Energy-barrier enhancement by ligand substitution in tetrairon(III) single-molecule magnets. Angew. Chem. Int. Ed. 43, 1136–1139 (2004).

    Article  CAS  Google Scholar 

  24. Accorsi, S. et al. Tuning anisotropy barriers in a family of tetrairon(III) single-molecule magnets with an S=5 ground state. J. Am. Chem. Soc. 128, 4742–4755 (2006).

    Article  CAS  Google Scholar 

  25. Barra, A. L. et al. New single-molecule magnets by site-specific substitution: Incorporation of ‘alligator clips’ into Fe4 complexes. Eur. J. Inorg. Chem. 4145–4152 (2007).

    Article  Google Scholar 

  26. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    Article  CAS  Google Scholar 

  27. Sainctavit, Ph. & Kappler, J.-P. in X-ray Magnetic Circular Dichroism at Low Temperature in Magnetism and Synchrotron Radiation (eds Beaurepaire, E., Scheurer, F., Krill, G. & Kappler, J.-P.) 135–153 (Springer, 2001).

    Google Scholar 

  28. Letard, I. et al. Remnant magnetization of Fe8 high-spin molecules: X-ray magnetic circular dichroism at 300 mK. J. Appl. Phys. 101, 113920 (2007).

    Article  Google Scholar 

  29. Nakajima, R., Stohr, J. & Idzerda, Y. U. Electron-yield saturation effects in L-edge x-ray magnetic circular dichroism spectra of Fe, Co, and Ni. Phys. Rev. B 59, 6421–6429 (1999).

    Article  CAS  Google Scholar 

  30. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

Download references


We acknowledge F. Scheurer, J. P. Kappler and B. Muller for their help in the installation of the endstation, and the staff of the X11MA-SIM (Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland) and UE46-PGM (BESSY synchrotron, Berlin, Germany) beamlines for their support. In particular, we thank A. Fraile-Rodriguez, L. Joly and F. Nolting for their excellent technical support at the X11MA-SIM beamline. We thank L. Gorini for his contribution to the development of the ligand synthesis and M. Etienne for his help in artwork preparation. This research project has been supported by the EU, within the EU FP6, through the Key Action: Strengthening the European Research Area, Research Infrastructures, through NoE MAGMANet, through the Integrated Infrastructure Initiative ‘Integrating Activity on Synchrotron and Free Electron Laser Science’ and through the ERANET project ‘NanoSci-ERA: NanoScience in the European Research Area’. It has been partially financially supported by the Italian CNR and MIUR and by the German DFG.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Roberta Sessoli.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1597 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mannini, M., Pineider, F., Sainctavit, P. et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nature Mater 8, 194–197 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing