Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An inconvenient truth about thermoelectrics

Despite recent advances, thermoelectric energy conversion will never be as efficient as steam engines. That means thermoelectrics will remain limited to applications served poorly or not at all by existing technology. Bad news for thermoelectricians, but the climate crisis requires that we face bad news head on.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Integrating thermoelectrics into vehicles for improved fuel efficiency.

BMW Group

Figure 2: Assessing thermoelectrics.
Figure 3: Size can favour thermoelectrics.

References

  1. Vining, C. B. in: European Conference on Thermoelectrics, ECT2007 (ed. Semenyuk, V.) (Odessa, Ukraine, 2007); http://ect2007.its.org/system/files/u1/pdf/02.pdf

    Google Scholar 

  2. Crabtree, G. W. & Lewis, N. S. Phys. Today 60, 37–42 (2007).

    Article  CAS  Google Scholar 

  3. Lewis, N. S. & Crabtree, G. W. Basic Research Needs for Solar Energy Utilization (US Department of Energy, 2005); http://www.sc.doe.gov/bes/reports/abstracts.html#SEU

    Google Scholar 

  4. Bell, L. E. Science 321, 1457–1461 (2008).

    Article  CAS  Google Scholar 

  5. Tritt, T. M., Böttner, H. & Chen, L. Mater. Res. Soc. Bull. 33, 366–368 (2008).

    Article  CAS  Google Scholar 

  6. Harman, T. C., Taylor, P. J., Spears, D. L. & Walsh, M. P. J. Electron. Mater. 29, L1–L4 (2000).

    Article  CAS  Google Scholar 

  7. Harman, T. C., Walsh, M. P., Laforge, B. E. & Turner, G. W. J. Electron. Mater. 34, L19–L22 (2005).

    Article  CAS  Google Scholar 

  8. Venkatasubramanian, R., Silvola, E., Colpitts, T. & O'Quinn, B. Nature 413, 597–602 (2001).

    Article  CAS  Google Scholar 

  9. Hsu, K. F. et al. Science 303, 818–821 (2004).

    Article  CAS  Google Scholar 

  10. Poudel, B. et al. Science 320, 634–638 (2008).

    Article  CAS  Google Scholar 

  11. Kadota, M. & Yamamoto, K. in Advanced Hybrid Vehicle Powertrain 2008–01–310 (SAE International, 2008).

    Google Scholar 

Download references

Acknowledgements

I wish to thank A. Gore, L. Bell, J. Snyder, J. Stockholm, C. Uher, B. LeSage, B. Nickerson, R. Venkatasubramanian, D. Rowe, T. Kajikawa, J.-P. Fleurial, T. Caillat, J. Heath, L. Whitlow, H. Böttner, E. P. Vining and many others throughout the thermoelectric community for discussions and input. The opinions, errors and omissions, however, are solely my own.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

C.B.V. is an independent energy conversion consultant.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vining, C. An inconvenient truth about thermoelectrics. Nature Mater 8, 83–85 (2009). https://doi.org/10.1038/nmat2361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2361

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing