Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Reversible switching between p- and n-type conduction in the semiconductor Ag10Te4Br3

Abstract

Semiconductors are key materials in modern electronics and are widely used to build, for instance, transistors in integrated circuits as well as thermoelectric materials for energy conversion, and there is a tremendous interest in the development and improvement of novel materials and technologies to increase the performance of electronic devices and thermoelectrics. Tetramorphic Ag10Te4Br3 is a semiconductor capable of switching its electrical properties by a simple change of temperature. The combination of high silver mobility, a small non-stoichiometry range and an internal redox process in the tellurium substructure causes a thermopower drop of 1,400 μV K−1, in addition to a thermal diffusivity in the range of organic polymers. The capability to reversibly switch semiconducting properties from ionic to electronic conduction in one single compound simply by virtue of temperature enables novel electronic devices such as semiconductor switches.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Electrical conductivity, Seebeck coefficient and DSC data for Ag10Te4Br3.
Figure 2: Temperature dependence of the cell voltage of a galvanic cell with a Ag10Te4Br3 electrode versus the Ag reference.
Figure 3: Steady-state current–voltage curves for a Pt microelectrode on Ag10Te4Br3 at different temperatures within the relevant range 363 to 403 K.
Figure 4: ELF analysis of the polyanionic substructure of Ag10Te4Br3.
Figure 5: Temperature-dependent solid-state 125Te MAS-NMR data for Ag10125Te4Br3.
Figure 6: Temperature-dependent isotropic chemical shifts of the covalently bonded Te positions for all Ag10Te4Br3 polymorphs.
Figure 7: Temperature-dependent static and MAS 109Ag solid-state NMR spectra for Ag10Te4Br3.

References

  1. Keen, D. A. Disordering phenomena in superionic conductors. J. Phys. Condens. Matter 14, R819–R857 (2002).

    Article  CAS  Google Scholar 

  2. Knauth, P. & Tuller, H. L. Solid-state ionics: Roots, status, and future prospects. J. Am. Ceram. Soc. 85, 1650–1680 (2002).

    Google Scholar 

  3. Hull, S. Superionics: Crystal structures and conduction processes. Rep. Prog. Phys. 67, 1233–1314 (2004).

    Article  CAS  Google Scholar 

  4. Wagner, C. The electromotive force of the cell: Ag|AgI|Ag2S|Pt(+S). Z. Elektrochem. Angew. Phys. Chem. 40, 364–365 (1934).

    CAS  Google Scholar 

  5. Miyatani, S. Electrical properties of the pseudo-binary systems Ag2TexSe1−x, Ag2TexS1−x, and Ag2SexS1−x . J. Phys. Soc. Jpn. 15, 1586–1595 (1960).

    Article  CAS  Google Scholar 

  6. Yokota, I. On the theory of mixed conduction with special reference to conduction in silver sulfide group semiconductors. J. Phys. Soc. Jpn. 16, 2213–2223 (1961).

    Article  Google Scholar 

  7. Rickert, H. & Wagner, C. Stationary conditions and stationary transport occurrences in silver sulfide in a temperature gradient. Ber. Bunsenges. Phys. Chem. 67, 621–629 (1963).

    Article  CAS  Google Scholar 

  8. Wysk, H. & Schmalzried, H. Electrochemical investigation of the α/β-phase transition of silver sulfide. Solid State Ion. 96, 41–47 (1997).

    Article  CAS  Google Scholar 

  9. Shukla, A. K. & Schmalzried, H. Electron transport studies of α-silver sulfide. Z. Phys. Chem. 118, 59–67 (1979).

    Article  CAS  Google Scholar 

  10. Rickert, H. & Wiemhöfer, H.-D. Stability behavior of mixed conducting solids after applying electrical potential differences—Measurements with point electrodes on Ag2S and Cu2S. Ber. Bunsenges. Phys. Chem. 87, 236–239 (1983).

    Article  CAS  Google Scholar 

  11. Kleinfeld, M. & Wiemhöfer, H.-D. Chemical diffusion-coefficients and stability of CuInS2 and CuInSe2 from polarization measurements with point electrodes. Solid State Ion. 28, 1111–1115 (1988).

    Article  Google Scholar 

  12. Waser, R. & Aono, M. Nanoionics-based resistive switching memories. Nature Mater. 6, 833–840 (2007).

    Article  CAS  Google Scholar 

  13. van Ruitenbeek, J. Silver nanoswitch. Nature 433, 21–22 (2005).

    Article  CAS  Google Scholar 

  14. Terabe, K., Hasegawa, T., Nakayama, T. & Aono, M. Quantized conductance atomic switch. Nature 433, 47–50 (2005).

    Article  CAS  Google Scholar 

  15. Maier, J. Nanoionics: Ion transport and electrochemical storage in confined systems. Nature Mater. 4, 805–818 (2005).

    Article  CAS  Google Scholar 

  16. Bonnecaze, G., Lichanot, A. & Gromb, S. Electronic and electrogalvanic properties of α silver telluride. J. Phys. Chem. Solids 44, 967–974 (1983).

    Article  CAS  Google Scholar 

  17. Preis, W. & Sitte, W. Electrochemical cell for composition dependent measurements of electronic and ionic conductivities of mixed conductors and application to silver telluride. Solid State Ion. 76, 5–14 (1995).

    Article  CAS  Google Scholar 

  18. Riess, I. I–V relations in semiconductor with ionic motions. J. Electroceram. 17, 247–253 (2006).

    Article  CAS  Google Scholar 

  19. Sales, B. C. Critical overview of recent approaches to improved thermoelectric materials. Int. J. Appl. Ceram. Tech. 4, 291–296 (2007).

    Article  CAS  Google Scholar 

  20. Sales, B. C. Smaller is cooler. Science 295, 1248–1249 (2002).

    Article  CAS  Google Scholar 

  21. Lange, S. & Nilges, T. Ag10Te4Br3: A new silver(I) (poly)chalcogenide halide solid electrolyte. Chem. Mater. 18, 2538–2544 (2006).

    Article  CAS  Google Scholar 

  22. Lange, S. Polymorphism, structural frustration, and electrical properties of the mixed conductor Ag10Te4Br3 . Chem. Mater. 19, 1401–1410 (2007).

    Article  CAS  Google Scholar 

  23. Nilges, T., Bawohl, M. & Lange, S. Ag10Te4Br3−xClx and Ag10Te4Br3−yIy: Structural and electrical property tuning of a mixed conductor by partial anion substitution. Z. Naturforsch. 62b, 955–964 (2007).

    Article  Google Scholar 

  24. Nilges, T. & Bawohl, M. Structures and thermal properties of silver(I) (poly)chalcogenide halide solid solutions Ag10Te4−(q,p)Q(q,p)Br3 with Q=S, Se. Z. Naturforsch. 63b, 629–636 (2008).

    Article  Google Scholar 

  25. Lange, S., Bawohl, M. & Nilges, T. Crystal structures, thermal and electrical properties of the new silver (poly)chalcogenide halides Ag23Te12Cl and Ag23Te12Br. Inorg. Chem. 47, 2625–2633 (2008).

    Article  CAS  Google Scholar 

  26. Fujikane, M., Kurosaki, K., Muta, H. & Yamanaka, S. Thermoelectric properties of α- and β-Ag2Te. J. Alloys Compounds 393, 299–301 (2005).

    Article  CAS  Google Scholar 

  27. Kurosaki, K., Kosuga, A., Muta, H., Uno, M. & Yamanaka, S. Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl. Phys. Lett. 87, 061919 (2005).

    Article  Google Scholar 

  28. Papoian, G. A. & Hoffmann, R. Hypervalenzverbindungen in einer, zwei und drei Dimensionen: Erweiterung des Zintl–Klemm–Konzepts auf nichtklassische elektronenreiche Netze. Angew. Chem. 112, 2500–2544 (2000).

    Article  Google Scholar 

  29. Wu, H.-L., Goff, W. & Phillips, P. Insulator–metal transitions in random lattices containing symmetrical defects. Phys. Rev. B 45, 1623–1628 (1992).

    Article  CAS  Google Scholar 

  30. Korte, C. & Janek, J. Nonisothermal transport properties of α-Ag2+dS: Partial thermopowers of electrons and ions, the Soret effect and heats of transport. J. Phys. Chem. Solids 58, 623–637 (1997).

    Article  CAS  Google Scholar 

  31. Dordor, P., Marquestaut, E. & Villeneuve, G. Dispositif de mesures du pouvoir thermoélectrique sur des échantillons très résistants entre 4 et 300 K. Rev. Phys. Appl. 15, 1607–1612 (1980).

    Article  CAS  Google Scholar 

  32. Dovesi, R. CRYSTAL06, Torino, Italy, (2007).

  33. Towler, M. D., Causa, M. & Zupan, A. Density functional theory in periodic systems using local Gaussian basis sets. Comput. Phys. Commun. 98, 181 (1996).

    Article  CAS  Google Scholar 

  34. Becke, A. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990).

    Article  CAS  Google Scholar 

  35. Savin, A., Nesper, R., Wengert, S. & Fässler, T. E. Die Elektronenlokalisierungsfunktion—ELF. Angew. Chem. 109 1892–1918 (1997); ELF: The electron localization function. Angew. Chem. Int. Ed. Engl. 36, 1808–1832 (1997).

  36. Weihrich, R., Anusca, I. & Zabel, M. Halbantiperowskite: Zur Struktur der Shandite M3/2AS (M=Co, Ni; A=In, Sn) und ihren Typ-Antitypbeziehungen. Z. Anorg. Allg. Chem. 631, 1463–1470 (2005).

    Article  CAS  Google Scholar 

  37. Penner, G. H. & Wenli, L. Silver 109 NMR spectroscopy of inorganic solids. Inorg. Chem. 43, 5588–5597 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Sonderforschungsbereich 458. We thank W. Hermes for the Cp measurements.

Author information

Authors and Affiliations

Authors

Contributions

S.L. prepared the sample, performed the phase analyses and carried out the chemical characterizations. M.B., M.J., J.M.D. and H.D.W. conducted the electrochemical experiments and R.D. and B.C. measured the thermoelectric data. NMR spectra were recorded and interpreted by J.V. and H.E., R.W. carried out the quantum chemical calculations and T.N. devised the project and planed all project steps, interpreted all thermoelectric and structure data and wrote the manuscript.

Corresponding author

Correspondence to Tom Nilges.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1100 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nilges, T., Lange, S., Bawohl, M. et al. Reversible switching between p- and n-type conduction in the semiconductor Ag10Te4Br3. Nature Mater 8, 101–108 (2009). https://doi.org/10.1038/nmat2358

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2358

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing