Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures

Abstract

Polymer nanocomposites (PNCs), prepared by incorporating nanoparticles within a polymer host, generally exhibit properties that differ significantly from those of the host, even with small amounts of nanoparticles. A significant challenge is how to tailor the properties of these materials for applications (structural and biomedical to optoelectronic), because PNCs derive their properties from a collective and complex range of entropic and enthalpic interactions. Here, we show that PNCs, prepared from athermal mixtures of polymer-chain-grafted gold nanoparticles and unentangled polymer chains, may exhibit increases or decreases in their relaxation dynamics, and viscosity, by over an order of magnitude through control of nanoparticle concentration, nanoparticle size, grafting density and grafting chain degree of polymerization. In addition, we show how the glass transition may also be tailored by up to 10 with the addition of less than 1.0 wt% nanoparticles to the polymer host.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in the glass-transition temperatures of PS nanocomposites as a function of PS-grafted gold nanoparticle weight fraction.
Figure 2: STEM images of nanoparticle distributions in 250-nm-thick films, microtomed from bulk PNC samples.
Figure 3: Chain dynamics in the nanocomposites.
Figure 4: Fragility plots for the mixtures of PS-grafted gold nanoparticles and PS.

Similar content being viewed by others

References

  1. Tsagaropoulos, G. & Eisenburg, A. Direct observation of two glass transitions in silica-filled polymers. Implications to the morphology of random ionomers. Macromolecules 28, 396–398 (1995).

    Article  CAS  Google Scholar 

  2. Starr, F. W., Schroder, T. B. & Glotzer, S. C. Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules 35, 4481–4492 (2002).

    Article  CAS  Google Scholar 

  3. Kropka, J. M., Putz, K. W., Pryamitsyn, V., Ganesan, V. & Green, P. F. Origin of dynamical properties in PMMA-C60 nanocomposites. Macromolecules 40, 5424–5432 (2007).

    Article  CAS  Google Scholar 

  4. Kropka, J. M., Garcia Sakai, V. & Green, P. F. Local polymer dynamics in polymer-C60 mixtures. Nano Lett. 8, 1061–1065 (2008).

    Article  CAS  Google Scholar 

  5. Mackay, M. E. et al. Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nature Mater. 2, 762–766 (2003).

    Article  CAS  Google Scholar 

  6. Tuteja, A., Mackay, M. E., Hawker, C. J. & Van Horn, B. Effect of ideal, organic nanoparticles on the flow properties of linear polymers: Non-Einstein-like behavior. Macromolecules 38, 8000–8011 (2005).

    Article  CAS  Google Scholar 

  7. Bansal, A. et al. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nature Mater. 4, 693–698 (2005).

    Article  CAS  Google Scholar 

  8. Smith, G. D., Bedrov, D., Li, L. & Byutner, O. A molecular dynamics simulation study of the viscoelastic properties of polymer nanocomposites. J. Chem. Phys. 117, 9478–9489 (2002).

    Article  CAS  Google Scholar 

  9. Hooper, J. B. & Schweizer, K. S. Contact aggregation, bridging, and steric stabilization in dense polymer-particle mixtures. Macromolecules 38, 8858–8869 (2005).

    Article  CAS  Google Scholar 

  10. Pryamitsyn, V. & Ganesan, V. Origins of linear viscoelastic behavior of polymer-nanoparticle composites. Macromolecules 39, 844–856 (2006).

    Article  CAS  Google Scholar 

  11. Srivastava, S. & Basu, J. K. Experimental evidence for a new parameter to control the glass transition of confined polymers. Phys. Rev. Lett. 98, 165701 (2007).

    Article  CAS  Google Scholar 

  12. Ferry, J. D. Viscoelastic Properties of Polymers 3rd edn (Wiley, 1980).

    Google Scholar 

  13. Schneider, H. A. & Di Marzio, E. The glass transition of polymer blends: comparison of both the free volume and the entropy predictions. Polymer 33, 3453–3461 (1992).

    Article  CAS  Google Scholar 

  14. DeMaggio, G. B. et al. Interface and surface effects on the glass transition in thin polystyrene films. Phys. Rev. Lett. 78, 1524–1528 (1997).

    Article  CAS  Google Scholar 

  15. Batchelor, G. K. Effect of Brownian-motion on bulk stress in a suspension of spherical-particles. J. Fluid Mech. 83, 97–117 (1977).

    Article  Google Scholar 

  16. Riggleman, R. A., Douglas, J. F. & de Pablo, J. J. Tuning polymer melt fragility with antiplasticizer additives. J. Chem. Phys. 126, 234903 (2007).

    Article  Google Scholar 

  17. Vrentas, J. S., Duda, J. L. & Ling, H. C. Antiplasticization and volumetric behavior in glassy polymers. Macromolecules 21, 1470–1475 (1988).

    Article  CAS  Google Scholar 

  18. Ferreira, P. G., Ajdari, A. & Leibler, L. Scaling law for entropic effects at interfaces between grafted layers and polymer melts. Macromolecules 31, 3994–4003 (1998).

    Article  CAS  Google Scholar 

  19. Pastorino, C., Binder, K., Kreer, T. & Muller, M. Static and dynamic properties of the interface between a polymer brush and a melt of identical chains. J. Chem. Phys. 124, 064902 (2006).

    Article  CAS  Google Scholar 

  20. Xu, J., Qiu, F., Zhang, H. & Yang, Y. Morphology and interactions of polymer brush-coated spheres in a polymer matrix. J. Polym. Sci. B 44, 2811–2820 (2006).

    Article  CAS  Google Scholar 

  21. Frischknecht, A. L. Forces between nanorods with end-adsorbed chains in a homopolymer melt. J. Chem. Phys. 128, 224902 (2008).

    Article  Google Scholar 

  22. Meli, L. & Green, P. F. Aggregation and coarsening of ligand-stabilized gold nanoparticles in poly(methyl methacrylate) thin films. ACS Nano. 2, 1305–1312 (2008).

    Article  CAS  Google Scholar 

  23. Bansal, A. et al. Controlling the thermomechanical properties of polymer nanocomposites by tailoring the polymer-particle interface. J. Polym. Sci. B 44, 2944–2950 (2006).

    Article  CAS  Google Scholar 

  24. Desai, T., Keblinski, P. & Kumar, S. K. Molecular dynamics simulations of polymer transport in nanocomposites. J. Chem. Phys. 122, 134910 (2005).

    Article  Google Scholar 

  25. Green, P. F. Kinetics, Transport, and Structure in Hard and Soft Materials (CRC Press, Taylor and Francis, 2005).

    Book  Google Scholar 

  26. Long, D. & Lequeux, F. Heterogeneous dynamics at the glass transition in van der Waals liquids, in the bulk and in thin films. Eur. Phys. J. E 4, 371–387 (2001).

    Article  CAS  Google Scholar 

  27. Kropka, J. M., Pryamitsyn, V. & Ganesan, V. Relation between glass transition temperatures in polymer nanocomposites and polymer thin films. Phys. Rev. Lett. 101, 075702 (2008).

    Article  Google Scholar 

  28. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J. & Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 801–802 (1994).

  29. Brust, M., Fink, J., Bethell, D., Schiffrin, D. J. & Kiely, C. Synthesis and reactions of functionalized gold nanoparticles. J. Chem. Soc. Chem. Commun. 1655–1656 (1995).

  30. Fukao, K. & Miyamoto, Y. Glass transition temperature and dynamics of alpha-process in thin polymer films. Europhys. Lett. 46, 649–654 (1999).

    Article  CAS  Google Scholar 

  31. Bauer, C. et al. Capacitive scanning dilatometry and frequency-dependent thermal expansion of polymer films. Phys. Rev. E 61, 1755–1764 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this research from US Department of Energy DOE grant No. DE-FG02-07ER46412 is gratefully acknowledged. The JEOL 2010F analytical electron microscope used in this study was funded by National Science Foundation grant No. DMR 9871177. H.O. acknowledges the help of L. Meli and X. Chen with the STEM data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter F. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, H., Green, P. Polymer chain dynamics and glass transition in athermal polymer/nanoparticle mixtures. Nature Mater 8, 139–143 (2009). https://doi.org/10.1038/nmat2354

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2354

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing