Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions

Abstract

Recent advances in colloidal synthesis enabled the precise control of the size, shape and composition of catalytic metal nanoparticles, enabling their use as model catalysts for systematic investigations of the atomic-scale properties affecting catalytic activity and selectivity. The organic capping agents stabilizing colloidal nanoparticles, however, often limit their application in high-temperature catalytic reactions. Here, we report the design of a high-temperature-stable model catalytic system that consists of a Pt metal core coated with a mesoporous silica shell (Pt@mSiO2). Inorganic silica shells encaged the Pt cores up to 750 C in air and the mesopores providing direct access to the Pt core made the Pt@mSiO2 nanoparticles as catalytically active as bare Pt metal for ethylene hydrogenation and CO oxidation. The high thermal stability of Pt@mSiO2 nanoparticles enabled high-temperature CO oxidation studies, including ignition behaviour, which was not possible for bare Pt nanoparticles because of their deformation or aggregation. The results suggest that the Pt@mSiO2 nanoparticles are excellent nanocatalytic systems for high-temperature catalytic reactions or surface chemical processes, and the design concept used in the Pt@mSiO2 core–shell catalyst can be extended to other metal/metal oxide compositions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the synthesis of Pt@mSiO2 nanoparticles.
Figure 2: TEM and XRD characterizations of TTAB-capped Pt and as-synthesized Pt@SiO2 core–shell nanoparticles.
Figure 3: Thermal stability of Pt@mSiO2 nanoparticles.
Figure 4: Structural characterization of Pt@mSiO2 nanoparticles calcined at 350 C.
Figure 5
Figure 6: Pt nanoparticle morphologies before and after CO oxidation.

Similar content being viewed by others

References

  1. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 299, 1688–1691 (2003).

    Article  CAS  Google Scholar 

  2. Schlögl, R. & Abd Hamid, S. B. Nanocatalysis: mature science revisited or something really new? Angew. Chem. Int. Ed. 43, 1628–1637 (2004).

    Article  Google Scholar 

  3. Somorjai, G. A., Contreras, A. M., Montano, M. & Rioux, R. M. Clusters, surfaces, and catalysis. Proc. Natl Acad. Sci. USA 103, 10577–10583 (2006).

    Article  CAS  Google Scholar 

  4. Thomas, J. M. Heterogeneous catalysis: Enigmas, illusions, challenges, realities, and emergent strategies of design. J. Chem. Phys. 128, 182502 (2008).

    Article  Google Scholar 

  5. Somorjai, G. A. Introduction to Surface Chemistry and Catalysis (Wiley, 1994).

    Google Scholar 

  6. Over, H. et al. Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 287, 1474–1476 (2000).

    Article  CAS  Google Scholar 

  7. Greeley, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nature Mater. 3, 810–815 (2004).

    Article  CAS  Google Scholar 

  8. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  Google Scholar 

  9. Roucoux, A., Schulz, J. & Patin, H. Reduced transition metal colloids: A novel family of reusable catalysts? Chem. Rev. 102, 3757–3778 (2002).

    Article  CAS  Google Scholar 

  10. Park, J., Joo, J., Kwon, S. G., Jang, Y. & Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 46, 4630–4660 (2007).

    Article  CAS  Google Scholar 

  11. Tao, A. R., Habas, S. & Yang, P. Shape control of colloidal metal nanocrystals. Small 4, 310–325 (2008).

    Article  CAS  Google Scholar 

  12. Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A. & El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924–1926 (1996).

    Article  CAS  Google Scholar 

  13. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  Google Scholar 

  14. Song, H. et al. Hydrothermal growth of mesoporous SBA-15 silica in the presence of PVP-stabilized Pt nanoparticles: Synthesis, characterization, and catalytic properties. J. Am. Chem. Soc. 128, 3027–3037 (2006).

    Article  CAS  Google Scholar 

  15. Narayanan, R. & El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 4, 1343–1348 (2004).

    Article  CAS  Google Scholar 

  16. Tian, N., Zou, Z.-Y., Sun, S.-G., Ding, Y. & Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    Article  CAS  Google Scholar 

  17. Bratlie, K. M., Lee, H., Komvopoulos, K., Yang, P. & Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 7, 3097–3101 (2007).

    Article  CAS  Google Scholar 

  18. Alayoglu, S., Nilekar, A. U., Mavrikakis, M. & Eichhorn, B. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nature Mater. 7, 333–338 (2008).

    Article  CAS  Google Scholar 

  19. Park, J. Y., Zhang, Y., Grass, M., Zhang, T. & Somorjai, G. A. Tuning of catalytic CO oxidation by changing composition of Rh–Pt bimetallic nanoparticles. Nano Lett. 8, 673–677 (2008).

    Article  CAS  Google Scholar 

  20. Langmuir, I. The mechanism of the catalytic action of platinum in the reactions 2CO+O2=2CO2 and 2H2+O2=2H2O. Trans. Faraday Soc. 17, 621–654 (1922).

    Article  Google Scholar 

  21. Campbell, C. T., Ertl, G., Kuipers, H. & Segner, J. A molecular beam study of the catalytic oxidation of CO on a Pt(111) surface. J. Chem. Phys. 73, 5862–5873 (1980).

    Article  CAS  Google Scholar 

  22. Berlowitz, P. J., Peden, C. H. F. & Goodman, D.W. Kinetics of CO oxidation on single-crystal Pd, Pt, and Ir. J. Phys. Chem. 92, 5213–5221 (1988).

    Article  CAS  Google Scholar 

  23. Chen, M. S. et al. Highly active surfaces for CO oxidation on Rh, Pd, and Pt. Surf. Sci. 601, 5326–5331 (2007).

    Article  CAS  Google Scholar 

  24. Su, X., Cremer, P. S., Shen, Y. R. & Somorjai, G. A. High-pressure CO oxidation on Pt(111) monitored with infrared-visible sum frequency generation (SFG). J. Am. Chem. Soc. 119, 3994–4000 (1997).

    Article  CAS  Google Scholar 

  25. McCrea, K. R., Parker, J. S. & Somorjai, G. A. The role of carbon deposition from CO dissociation on platinum crystal surfaces during catalytic CO oxidation: Effects on turnover rate, ignition temperature, and vibrational spectra. J. Phys. Chem. 106, 10854–10863 (2002).

    Article  CAS  Google Scholar 

  26. Zaera, F. The surface chemistry of hydrocarbon partial oxidation catalysis. Catal. Today 81, 149–157 (2003).

    Article  CAS  Google Scholar 

  27. Huber, G. W. & Corma, A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angew. Chem. Int. Ed. 46, 7184–7201 (2007).

    Article  CAS  Google Scholar 

  28. Ciuparu, D., Lyubovsky, M. R., Altman, E., Pfefferle, L. D. & Datye, A. Catalytic combustion of methane over palladium-based catalysts. Catal. Rev. 44, 593–649 (2002).

    Article  CAS  Google Scholar 

  29. Somorjai, G. A. & Rioux, R. M. High technology catalysts towards 100% selectivity. Fabrication, characterization and reaction studies. Catal. Today 100, 201–215 (2005).

    Article  CAS  Google Scholar 

  30. Lee, H. et al. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 45, 7824–7828 (2006).

    Article  CAS  Google Scholar 

  31. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal mechanism. Nature 359, 710–712 (1992).

    Article  CAS  Google Scholar 

  32. Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373–2419 (1997).

    Article  CAS  Google Scholar 

  33. Kim, M., Sohn, K., Na, H. B. & Hyeon, T. Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells. Nano Lett. 2, 1383–1387 (2002).

    Article  CAS  Google Scholar 

  34. Nooney, R. I., Thirunavukkarasu, D., Chen, Y., Josephs, R. & Ostafin, A. E. Self-assembly of mesoporous nanoscale silica/gold composites. Langmuir 19, 7628–7637 (2003).

    Article  CAS  Google Scholar 

  35. Botella, P., Corma, A. & Navarro, M. T. Single gold nanoparticles encapsulated in monodispersed regular spheres of mesostructured silica produced by pseudomorphic transformation. Chem. Mater. 19, 1979–1983 (2007).

    Article  CAS  Google Scholar 

  36. van Hardeveld, R. & Hartog, F. The statistics of surface atoms and surface sites on metal crystals. Surf. Sci. 15, 189–230 (1969).

    Article  CAS  Google Scholar 

  37. Yu, R., Song, H., Zhang, X.-F. & Yang, P. Thermal wetting of platinum nanocrystals on silica surface. J. Phys. Chem. B 109, 6940–6943 (2005).

    Article  CAS  Google Scholar 

  38. Yin, Y. et al. Formation of hollow nanocrystals through nanoscale Kirkendall effect. Science 304, 711–714 (2004).

    Article  CAS  Google Scholar 

  39. Lin, K.-J., Chen, L.-J., Prasad, M. R. & Cheng, C.-Y. Core–shell synthesis of a novel, spherical, mesoporous silica/platinum nanocomposite: Pt/PVP@MCM-41. Adv. Mater. 16, 1845–1849 (2004).

    Article  CAS  Google Scholar 

  40. Ikeda, S. et al. Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. Angew. Chem. Int. Ed. 45, 7063–7066 (2006).

    Article  CAS  Google Scholar 

  41. Arnal, P. M., Comotti, M. & Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 45, 8224–8227 (2006).

    Article  CAS  Google Scholar 

  42. Lee, J., Park, J. C. & Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 20, 1523–1528 (2008).

    Article  CAS  Google Scholar 

  43. Yu, K., Wu, Z., Zhao, Q., Li, B. & Xie, Y. High-temperature-stable Au@SnO2 core/shell supported catalyst for CO oxidation. J. Phys. Chem. C 112, 2244–2247 (2008).

    Article  CAS  Google Scholar 

  44. Liz-Marzán, L. M., Giersig, M. & Mulvaney, P. Synthesis of nanosized gold-silica core–shell particles. Langmuir 12, 4329–4335 (1996).

    Article  Google Scholar 

  45. Lu, Y., Yin, Y., Li, Z.-Y. & Xia, Y. Synthesis and self-assembly of Au@SiO2 core–shell colloids. Nano Lett. 2, 785–788 (2002).

    Article  CAS  Google Scholar 

  46. Gorelikov, I. & Matsuura, N. Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett. 8, 369–373 (2008).

    Article  CAS  Google Scholar 

  47. Schmidt-Winkel, P. et al. Microemulsion templating of siliceous mesostructured cellular foams with well-defined ultralarge mesopores. Chem. Mater. 12, 686–696 (2000).

    CAS  Google Scholar 

  48. Rioux, R. M., Song, H., Hoefelmeyer, J. D., Yang, P. & Somorjai, G. A. High-surface-area catalyst design: Synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. J. Phys. Chem. B 109, 2192–2202 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geological and Biosciences and Division of Materials Sciences and Engineering of the U.S. Department of Energy under contract No. DE-AC02-05CH11231. We thank A. P. Alivisatos and his group for the use of TEM and XRD equipment. We also thank J. N. Kuhn, Y.-w. Jun and J. Park for helpful comments and S. M. Ko for illustrations in Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

G.A.S., P.Y., S.H.J. and J.Y.P. designed the research. S.H.J, C.-K.T. and Y.Y. carried out the synthesis and characterizations of nanoparticles. J.Y.P. and S.H.J. carried out catalysis experiments. S.H.J., J.Y.P., P.Y. and G.A.S. wrote the paper.

Corresponding author

Correspondence to Gabor A. Somorjai.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1802 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joo, S., Park, J., Tsung, CK. et al. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nature Mater 8, 126–131 (2009). https://doi.org/10.1038/nmat2329

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2329

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing