Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Crystal structure prediction from first principles

Abstract

The prediction of structure at the atomic level is one of the most fundamental challenges in condensed matter science. Here we survey the current status of the field and consider recent developments in methodology, paying particular attention to approaches for surveying energy landscapes. We illustrate the current state of the art in this field with topical applications to inorganic, especially microporous solids, and to molecular crystals; we also look at applications to nanoparticulate structures. Finally, we consider future directions and challenges in the field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Microporous structures or networks of corner-sharing tetrahedra.
Figure 2: Hybrid inorganic–organic microporous structure.
Figure 3: Examples of global minimum structures for oxide nanoparticles generated by using global optimization techniques.
Figure 4: Topological procedures can predict new framework structures.
Figure 5: De novo procedures have predicted templates for the synthesis of microporous materials.
Figure 6: Computational methods were successfully used to predict a new polymorph of 5-fluorouracil.
Figure 7: Snapshots from molecular dynamics simulations.
Figure 8: Candidate structures for Na3N.

References

  1. 1

    Maddox, J. Crystals from first principles. Nature 335, 201–201 (1988).

    Google Scholar 

  2. 2

    Parker, S. C. Prediction of mineral crystal structures. Solid State Ionics 8, 179–186 (1983).

    CAS  Google Scholar 

  3. 3

    Catlow, C. R. A., Thomas, J. M., Parker, S. C. & Jefferson, D. A. Simulating silicate structures and the structural chemistry of pyroxenoids. Nature 295, 658–662 (1982).

    CAS  Google Scholar 

  4. 4

    Ghosht, A., Sarkarf, A. K. & Basus, A. N. The breathing shell model calculation of the relative stability of structure of alkali halide crystals. J. Phys. C 8, 1332–1338 (1975).

    Google Scholar 

  5. 5

    Donnay, G., Donnay, J. D. H. & Takeda, H. Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimensions. Acta Cryst. 17, 1374–1381 (1964).

    CAS  Google Scholar 

  6. 6

    Catlow, C. R. A. & Price, G. D. Computer modelling of solid-state inorganic materials. Nature 347, 243–248 (1990).

    CAS  Google Scholar 

  7. 7

    Catlow, C. R. A. et al. Computer modelling of inorganic materials. Annu. Rep. Prog. Chem. A 101, 513–547 (2005).

    CAS  Google Scholar 

  8. 8

    Lewis, G. V. & Catlow, C. R. A. Potential models for ionic oxides. J. Phys. C 18, 1149–1161 (1985).

    CAS  Google Scholar 

  9. 9

    Shannon, M. D., Casci, J. L., Cox, P. A. & Andrews, S. J. Structure of the two-dimensional medium-pore high-silica zeolite NU-87. Nature 353, 417–420 (1991).

    CAS  Google Scholar 

  10. 10

    Kirkpatrick, S., Gellat, J. C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    CAS  Google Scholar 

  11. 11

    Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    CAS  Google Scholar 

  12. 12

    Pannetier, J., Bassas-Alsina, J., Rodriguez-Carvajal, J. & Caignaert, V. Prediction of crystal structures from crystal chemistry rules by simulated annealing. Nature 346, 343–345 (1990).

    CAS  Google Scholar 

  13. 13

    Schön, J. C. & Jansen, M. First step towards planning of syntheses in solid-state chemistry: Determination of promising structure candidates by global optimization. Angew. Chem. Int Ed. Engl. 35, 1287–1304 (1996).

    Google Scholar 

  14. 14

    Schön, J. C. & Jansen, M. Determination, prediction, and understanding of structures, using the energy landscapes of chemical systems. Z. Kristallogr. 216, 307–325 (2001).

    Google Scholar 

  15. 15

    Mellot-Draznieks, C., Newsam, J. M., Gorman, A. M., Freeman, C. M. & Férey, G. De novo prediction of inorganic structures developed through automated assembly of secondary building units (AASBU method). Angew. Chem. Int. Ed. 39, 2270–2275 (2000).

    CAS  Google Scholar 

  16. 16

    Mellot-Draznieks, C. et al. Computational design and prediction of interesting not-yet-synthesized structures of inorganic materials by using building unit concepts. Chem. Eur. J. 8, 4102–4113 (2002).

    CAS  Google Scholar 

  17. 17

    Mellot-Draznieks, C., Girard, S. & Férey, G. R. Novel inorganic frameworks constructed from double-four-ring (D4R) units: Computational design, structures, and lattice energies of silicate, aluminophosphate, and gallophosphate candidates. J. Am. Chem. Soc. 124, 15326–15335 (2002).

    CAS  Google Scholar 

  18. 18

    Mellot-Draznieks, C., Dutour, J. & Férey, G. R. Hybrid organic–inorganic frameworks: Routes for computational design and structure prediction. Angew. Chem. Int. Ed. 43, 6290–6296 (2004).

    CAS  Google Scholar 

  19. 19

    Wales, D. J. & Scheraga, H. A. Review: Chemistry. Global optimization of clusters, crystals, and biomolecules. Science 285, 1368–1372 (1999).

    CAS  Google Scholar 

  20. 20

    Wales, D. J. & Doyle, J. P. K. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).

    CAS  Google Scholar 

  21. 21

    Hamad, S., Catlow, C. R. A., Woodley, S. M., Lago, S. & Mejías, J. A. Structure and stability of small TiO2 nanoparticles. J. Phys. Chem. B 109, 15741–15748 (2005).

    CAS  Google Scholar 

  22. 22

    Coley, D. A. An Introduction to Genetic Algorithms for Scientists and Engineers (World Scientific, 1999).

    Google Scholar 

  23. 23

    Lloyd, L. D., Johnston, R. L. & Salhi, S. Strategies for increasing the efficiency of a genetic algorithm for the structural optimization of nanoalloy clusters. J. Comp. Chem. 26, 1069–1078 (2005).

    CAS  Google Scholar 

  24. 24

    Hartke, B. in Applications of Evolutionary Computation in Chemistry, 33–53 (Springer, 2004).

    Google Scholar 

  25. 25

    Johnston, R. L. Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries. Dalton Trans. 22, 4193–4207 (2003).

    Google Scholar 

  26. 26

    Woodley, S. M. Engineering microporous architectures: Combining an evolutionary algorithm with predefined exclusion zones. Phys. Chem. Chem. Phys. 9, 1070–1077 (2006).

    Google Scholar 

  27. 27

    Abraham, N. L. & Probert, M. I. J. A periodic genetic algorithm with real-space representation for crystal structure and polymorph prediction. Phys. Rev. B 73, 224104 (2006).

    Google Scholar 

  28. 28

    Woodley, S. M. in Applications of Evolutionary Computation in Chemistry, 95–132 (Springer, 2004).

    Google Scholar 

  29. 29

    Harris, K. D. M., Johnston, R. L. & Habershon, S. in Applications of Evolutionary Computation in Chemistry, 55–94 (Springer, 2004).

    Google Scholar 

  30. 30

    Turner, G. W., Tedesco, E., Harris, K. D. M., Johnston, R. L. & Kariuki, B. M. Implementation of Lamarckian concepts in a genetic algorithm for structure solution from powder diffraction data. Chem. Phys. Lett. 321, 183–190 (2000).

    CAS  Google Scholar 

  31. 31

    Roberts, C., Johnston, R. L. & Wilson, N. T. A genetic algorithm for the structural optimization of Morse clusters. Theor. Chem. Acc. 104, 123–130 (2000).

    CAS  Google Scholar 

  32. 32

    Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: Principles and applications. J. Chem. Phys. 124, 244704 (2006).

    Google Scholar 

  33. 33

    Woodley, S. M. & Catlow, C. R. A. Structure prediction of titania phases: Implementation of Darwinian versus Lamarckian concepts in an evolutionary algorithm. Comp. Mater. Sci. (in the press).

  34. 34

    Pickard, C. J. & Needs, R. J. When is H2O not water? J. Chem. Phys. 127, 244503 (2007).

    Google Scholar 

  35. 35

    Wells, A. F. The geometrical basis of crystal chemistry. 1–4. Acta Crystallogr. 7, 535–554; 842–853 (1954).

    CAS  Google Scholar 

  36. 36

    Smith, J. V. Enumeration of 4-connected 3-dimensional nets and classification of framework silicates. 1. Perpendicular linkage from simple hexagonal net. Am. Mineral. 62, 703–709 (1977).

    CAS  Google Scholar 

  37. 37

    Smith, J. V. Enumeration of 4-connected 3-dimensional nets and classification of framework silicates. 2. Perpendicular and near-perpendicular linkages from 4.82, 3.122 and 4.6.12 nets. Am. Mineral. 63, 960–969 (1978).

    CAS  Google Scholar 

  38. 38

    Smith, J. V. Enumeration of 4-connected 3-dimensional nets and classification of framework silicates. 3. Combination of helix, and zigzag, crankshaft and saw chains with simple 2d-nets. Am. Mineral. 64, 551–562 (1979).

    CAS  Google Scholar 

  39. 39

    O'Keefe, M. & Hyde, B. G. Crystal Structures I. Patterns and Symmetry (Mineral. Soc. Am., 1996).

    Google Scholar 

  40. 40

    Treacy, M. M. J., Randall, K. H., Rao, S., Perry, J. A. & Chadi, D. J. Enumeration of periodic tetrahedral frameworks. Z. Kristallogr. 212, 768–791 (1997).

    CAS  Google Scholar 

  41. 41

    Treacy, M. M. J., Rivin, I., Balkovsky, E., Randall, K. H. & Foster, M. D. Enumeration of periodic tetrahedral frameworks. II. Polynodal graphs. Micropor. Mesopor. Mater. 74, 121–132 (2004).

    CAS  Google Scholar 

  42. 42

    Foster, M. D. et al. Chemically feasible hypothetical crystalline networks. Nature Mater. 3, 234–238 (2004).

    CAS  Google Scholar 

  43. 43

    Dress, A. W. M., Huson, D. H. & Molnar, E. The classification of face-transitive periodic 3-dimensional tilings. Acta Crystallogr. A 49, 806–817 (1993).

    Google Scholar 

  44. 44

    Delgado, O., Huson, D. & Zamorzaeva, E. The classification of 2-isohedral tilings of the plane. Geometriae Dedicata 42, 43–117 (1992).

    Google Scholar 

  45. 45

    Friedrichs, O. D., Dress, A. W. M., Huson, D. H., Klinowski, J. & Mackay, A. L. Systematic enumeration of crystalline networks. Nature 400, 644–647 (1999).

    CAS  Google Scholar 

  46. 46

    O'Keeffe, M. Three-periodic nets and tilings: regular and related infinite polyhedra. Acta Crystallogr. A 64, 425–429 (2008).

    CAS  Google Scholar 

  47. 47

    Winkler, B., Pickard, C. J., Milman, V. & Thimm, G. Systematic prediction of crystal structures. Chem. Phys. Lett. 337, 36–42 (2001).

    CAS  Google Scholar 

  48. 48

    Le Bail, A. Inorganic structure prediction with GRINSP. J. Appl. Cryst. 38, 389–395 (2005).

    CAS  Google Scholar 

  49. 49

    Tajima, N., Tsuzuki, S., Tanabe, K., Aoki, K. & Hirano, T. First principles prediction of crystal structures of CO2 . Electron. J. Theor. Chem. 2, 139–148 (1997).

    CAS  Google Scholar 

  50. 50

    Arikawa, T., Tajima, N., Tsuzuki, S., Tanabe, K. & Hirano, T. A possible crystal-structure of 1,2-dimethoxyethane—prediction based on a lattice variable molecular-dynamics. Theochem: J. Mol. Struct. 339, 115–124 (1995).

    CAS  Google Scholar 

  51. 51

    Hirano, T., Tsuzuki, S., Tanabe, K. & Tajima, N. Totally ab initio prediction of the structures of CO2 molecular crystal. Chem. Lett. 12, 1073–1074 (1995).

    Google Scholar 

  52. 52

    Chaka, A. M., Zaniewski, R., Youngs, W., Tessier, C. & Klopman, G. Predicting the crystal structure of organic molecular materials. Acta Crystallogr. B 52, 165–183 (1996).

    Google Scholar 

  53. 53

    Ammon, H. L., Du, Z. Y., Holden, J. R. & Paquette, L. A. Acta Crystallogr. B 50, 216–220 (1994).

    Google Scholar 

  54. 54

    Van Eijck, B. P. & Kroon, J. Upack program package for crystal structure prediction: force fields and crystal structure generation for small carbohydrate molecules. J. Comput. Chem. 20, 799–812 (1999).

    CAS  Google Scholar 

  55. 55

    Holden, J. R., Du, Z. Y. & Ammon, H. L. Prediction of possible crystal-structures for C-containing, H-containing, N-containing, O-containing and F-containing organic-compounds. J. Comput. Chem. 14, 422–437 (1993).

    CAS  Google Scholar 

  56. 56

    Aakeroy, C. B., Nieuwenhuyzen, M. & Price, S. L. Three polymorphs of 2-amino-5-nitropyrimidine: Experimental structures and theoretical predictions. J. Am. Chem. Soc. 120, 8986–8993 (1998).

    Google Scholar 

  57. 57

    Beyer, T. & Price, S. L. Dimer or catemer? Low-energy crystal packings for small carboxylic acids. J. Phys. Chem. B 104, 2647–2655 (2000).

    CAS  Google Scholar 

  58. 58

    Price, S. L. & Wibley, K. S. Predictions of crystal packings for uracil, 6-azauracil, and allopurinol: The interplay between hydrogen bonding and close packing. J. Phys. Chem. A 101, 2198–2206 (1997).

    CAS  Google Scholar 

  59. 59

    Beyer, T., Day, G. M. & Price, S. L. The prediction, morphology, and mechanical properties of the polymorphs of paracetamol. J. Am. Chem. Soc. 123, 5086–5094 (2001).

    CAS  Google Scholar 

  60. 60

    Gdanitz, R. J. Prediction of molecular-crystal structures by Monte-Carlo simulated annealing without reference to diffraction data. Chem. Phys. Lett. 190, 391–396 (1992).

    CAS  Google Scholar 

  61. 61

    Price, S. L. From crystal structure prediction to polymorph prediction: interpreting the crystal energy landscape. Phys. Chem. Chem. Phys. 10, 1996–2009 (2008).

    CAS  Google Scholar 

  62. 62

    Dunitz, J. D. & Gavezzotti, A. Molecular recognition in organic crystals: Directed intermolecular bonds or nonlocalized bonding? Angew. Chem. Int. Ed. 44, 1766–1787 (2005).

    CAS  Google Scholar 

  63. 63

    Desiraju, G. R. Crystal engineering: A holistic view. Angew. Chem. Int. Ed. 46, 8342–8356 (2007).

    CAS  Google Scholar 

  64. 64

    Raiteri, P., Martoňák, R. & Parrinello, M. Exploring polymorphism: The case of benzene. Angew. Chem. Int. Ed. 44, 3769–3773 (2005).

    CAS  Google Scholar 

  65. 65

    Curtarolo, S., Morgan, D., Persson, K., Rodgers, J. & Ceder, G. Predicting crystal structures with data mining of quantum calculations. Phys. Rev. Lett. 91, 135503 (2003).

    Google Scholar 

  66. 66

    Fischer, C. C., Tibbetts, K. J., Morgan, D. & Ceder, G. Predicting crystal structure by merging data mining with quantum mechanics. Nature Mater. 5, 641–646 (2006).

    CAS  Google Scholar 

  67. 67

    Hofmann, D. W. M. & Apostolakis, J. Crystal structure prediction by data mining. J. Mol. Struct. 647, 17–39 (2003).

    CAS  Google Scholar 

  68. 68

    Schön, J. C., Čančarević, Ž. P., Hannermann, A. & Jansen, M. Free enthalpy landscape of SrO. J. Chem. Phys. 128, 194712 (2008).

    Google Scholar 

  69. 69

    Martoňák, R., Laio, A. & Parrinello, M. Predicting crystal structures: The Parrinello–Rahman method revisited. Phys. Rev. Lett. 90, 75503 (2003).

    Google Scholar 

  70. 70

    Schön, J. C., Pentin, I. V. & Jansen, M. Ab initio computation of the low-temperature phase diagrams of the alkali metal iodide-bromides: MBrxI1−x (0 ≤ x ≤ 1), where M = Li, Na, K, Rb, or Cs. J. Phys. Chem. B 111, 3943–3952 (2007).

    Google Scholar 

  71. 71

    Ceriani, C. et al. Molecular dynamics simulation of reconstructive phase transitions on an anhydrous zeolite. Phys. Rev. B 70, 113403 (2004).

    Google Scholar 

  72. 72

    Brown, I. D. Computer Modelling in Inorganic Crystallography Ch. 2 (ed. Catlow, C. R. A.) (Academic, 1994).

    Google Scholar 

  73. 73

    Lacorre, P., Pannetier, J., Hoppe, R., Averdunk, F. & Ferey, G. Crystal and magnetic-structures of LiCoF4—the 1st compound with a dirutile structure. J. Solid State Chem. 79, 1–11 (1989).

    CAS  Google Scholar 

  74. 74

    Freeman, C. M. & Catlow, C. R. A. Structure predictions in inorganic solids. J. Chem. Soc. Chem. Commun. 89–91 (1992).

  75. 75

    Freeman, C. M., Newman, J. M., Levine, S. M. & Catlow, C. R. A. Inorganic crystal-structure prediction using simplified potentials and experimental unit cells—application to the polymorphs of titanium-dioxide. J. Mater. Chem. 3, 531–535 (1993).

    CAS  Google Scholar 

  76. 76

    Woodley, S. M., Battle, P. D., Gale, J. D. & Catlow, C. R. A. The prediction of inorganic crystal structures using a genetic algorithm and energy minimisation. Phys. Chem. Chem. Phys. 1, 2535–2542 (1999).

    CAS  Google Scholar 

  77. 77

    Reinaudi, L., Carbonio, R. E. & Leiva, E. P. M. Inclusion of symmetry for the enhanced determination of crystalline structures from powder diffraction data using simulated annealing. J. Chem. Soc. Chem. Commun. 255–256 (1998).

  78. 78

    Reinaudi, L., Leiva, E. P. M. & Carbonia, R. E. Simulated annealing prediction of the crystal structure of ternary inorganic compounds using symmetry restrictions. J. Chem. Soc., Dalton Trans. 23, 4258–4262 (2000).

    Google Scholar 

  79. 79

    Bush, T. S., Catlow, C. R. A. & Battle, P. D. Evolutionary programming techniques for predicting inorganic crystal-structures. J. Mater. Chem. 5, 1269–1272 (1995).

    CAS  Google Scholar 

  80. 80

    Doll, K., Schön, J. C. & Jansen, M. Global exploration of the energy landscape of solids on the ab initio level. Phys. Chem. Chem. Phys. 9, 6128–6133 (2007).

    CAS  Google Scholar 

  81. 81

    Schön, J. C. & Jansen, M. Determination of candidate structures for Lennard-Jones-crystals through cell optimization. Ber. Bunsenges Phys. Chem. 98, 1541–1544 (1994).

    Google Scholar 

  82. 82

    Jansen, M. & Schön, J. C. Structure candidates for the alkali metal nitrides. Z. Anorg. Allg. Chem. 624, 533–540 (1998).

    CAS  Google Scholar 

  83. 83

    Putz, H., Schön, J. C. & Jansen, M. Investigation of the energy landscape of Mg2OF2 . Comput. Mater. Sci. 11, 309–322 (1998).

    CAS  Google Scholar 

  84. 84

    Wevers, M. A. C., Schön, J. C. & Jansen, M. Determination of structure candidates of simple crystalline AB2 systems. J. Solid State Chem. 136, 233–246 (1998).

    CAS  Google Scholar 

  85. 85

    Schön, J. C., Wevers, M. A. C. & Jansen, M. Prediction of high pressure phases in the systems Li3N, Na3N, (Li,Na)3N, Li2S and Na2S. J. Mater. Chem. 11, 69–77 (2001).

    Google Scholar 

  86. 86

    Ciobanu, C. V., Chuang, F. C. & Lytle, D. E. On the structure of the Si(103) surface. Appl. Phys. Lett. 91, 171909 (2007).

    Google Scholar 

  87. 87

    Briggs, R. M. & Ciobanu, C. V. Evolutionary approach for finding the atomic structure of steps on stable crystal surfaces. Phys. Rev. B 75, 195415 (2007).

    Google Scholar 

  88. 88

    Kasuya, A. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nature Mater. 3, 99–102 (2004).

    CAS  Google Scholar 

  89. 89

    Hamad, S., Cristol, S. & Catlow, C. R. A. Simulation of the embryonic stage of ZnS formation from aqueous solution. J. Am. Chem. Soc. 127, 2580–2590 (2005).

    CAS  Google Scholar 

  90. 90

    Wakisaka, A. Nucleation in alkali metal chloride solution observed at the cluster level. Faraday Discuss. 136, 299–308 (2007).

    CAS  Google Scholar 

  91. 91

    Burnin, A. & Belbruno, J. J. ZnnSm+ cluster production by laser ablation. Chem. Phys. Lett. 362, 341–348 (2002).

    CAS  Google Scholar 

  92. 92

    Whetten, R. L. Alkali-halide nanocrystals. Acc. Chem. Res. 26, 49–56 (1993).

    CAS  Google Scholar 

  93. 93

    Hamad, S., Catlow, C. R. A., Spano, E., Matxain, J. M. & Ugalde, J. M. Structure and properties of ZnS nanoclusters. J. Phys. Chem. B 109, 2703–2709 (2005).

    CAS  Google Scholar 

  94. 94

    Al-Sunaidi, A. A., Sokol, A. A., Catlow, C. R. A. & Woodley, S. M. Structures of zinc oxide nanoclusters: As found by evolutionary algorithm techniques. J. Phys. Chem. C (in the press).

  95. 95

    Hamad, S. & Catlow, C. R A. Computational study of the relative stabilities of ZnS clusters, for sizes between 1 and 4 nm. J. Cryst. Growth 294, 2–8 (2006).

    CAS  Google Scholar 

  96. 96

    Michaelian, K. Evolving few-ion clusters of Na and Cl. Am. J. Phys. 66, 231–240 (1998).

    CAS  Google Scholar 

  97. 97

    Wootton, A. & Harrowell, P. Inorganic nanotubes stabilized by ion size asymmetry: Energy calculations for AgI clusters. J. Phys. Chem. B 108, 8412–8418 (2004).

    CAS  Google Scholar 

  98. 98

    Roberts, C. & Johnston, R. L. Investigation of the structures of MgO clusters using a genetic algorithm. Phys. Chem. Chem. Phys. 3, 5024–5034 (2001).

    CAS  Google Scholar 

  99. 99

    Woodley, S. M., Sokol, A. A. & Catlow, C. R. A. Structure prediction of inorganic nanoclusters with a predefined architecture using a genetic algorithm. Z. Anorg. Allg. Chem. 630, 2343–2353 (2004).

    CAS  Google Scholar 

  100. 100

    Flikkema, E. & Bromley, S. T. Dedicated global optimization search for ground state silica nanoclusters: (SiO2)N (N = 6–12). J. Phys. Chem. B 108, 9638–9645 (2004).

    CAS  Google Scholar 

  101. 101

    Shevlin, S. A. et al. Structure, optical properties and defects in nitride (III–V) nanoscale cage clusters. Phys. Chem. Chem. Phys. 10, 1944–1959 (2008).

    CAS  Google Scholar 

  102. 102

    Michaelian, K., Rendón, N. & Garzón, I. L. Structure and energetics of Ni, Ag, and Au nanoclusters. Phys. Rev. B 60, 20003–2010 (1999).

    Google Scholar 

  103. 103

    Ferrando, R., Fortunelli, A. & Johnston, R. L. Searching for the optimum structures of alloy nanoclusters. Phys. Chem. Chem. Phys. 10, 640–649 (2008).

    CAS  Google Scholar 

  104. 104

    Paz-Borbon, L. O., Johnston, R. L., Barcaro, G. & Fortunelli, A. Structural motifs, mixing, and segregation effects in 38-atom binary clusters. J. Chem. Phys. 128, 134517 (2008).

    Google Scholar 

  105. 105

    Deem, M. W. & Newsam, J. M. Determination of 4-connected framework crystal-structures by simulated annealing. Nature 342, 260–262 (1989).

    CAS  Google Scholar 

  106. 106

    Deem, N. W. & Newsam, J. M. Framework crystal-structure solution by simulated annealing: test application to known zeolite structures. J. Am. Chem. Soc. 114, 7189–7198 (1992).

    CAS  Google Scholar 

  107. 107

    Falcioni, M. & Deem, M. W. A biased Monte Carlo scheme for zeolite structure solution. J. Chem. Phys. 110, 1754–1766 (1999).

    CAS  Google Scholar 

  108. 108

    Akporiaye, D. E. et al. UiO-7: A new aluminophosphate phase solved by simulated annealing and high-resolution powder diffraction. J. Phys. Chem. 100, 16641–16646 (1996).

    CAS  Google Scholar 

  109. 109

    Boisen, M. B., Gibbs, G. V. & Bukowinski, M. S. T. Framework silica structures generated using simulated annealing with a potential-energy function-based on an H6Si2O7 molecule. Phys. Chem. Miner. 21, 269–284 (1994).

    CAS  Google Scholar 

  110. 110

    Teter, D. M., Gibbs, G. V., Boisen, M. B., Allan, D. C. & Teter, M. P. First-principles study of several hypothetical silica framework structures. Phys. Rev. B 52, 8064–8073 (1995).

    CAS  Google Scholar 

  111. 111

    Boisen, M. B., Gibbs, G. V., O'Keeffe, M. & Bartelmehs, K. L. A generation of framework structures for the tectosilicates using a molecular-based potential energy function and simulated annealing strategies. Micropor. Mesopor. Mater. 29, 219–266 (1999).

    CAS  Google Scholar 

  112. 112

    Woodley, S. M., Catlow, C. R. A., Battle, P. D. & Gale, J. D. The prediction of close packed and porous inorganic crystal structures. Acta Cryst. A 58, C196 (2002).

    Google Scholar 

  113. 113

    Woodley, S. M. Prediction of inorganic crystal framework structures. Part II: using a genetic algorithm and a direct approach to exclusion zones. Phys. Chem. Chem. Phys. 6, 1823–1829 (2004).

    CAS  Google Scholar 

  114. 114

    Woodley, S. M., Battle, P. D., Gale, J. D. & Catlow, C. R. A. Prediction of inorganic crystal framework structures. Part I: Using a genetic algorithm and an indirect approach to exclusion zones. Phys. Chem. Chem. Phys. 6, 1815–1822 (2004).

    CAS  Google Scholar 

  115. 115

    Zwijnenburg, M. A., Cora, F. & Bell, R. G. Dramatic differences between the energy landscapes of SiO2 and SiS2 zeotype materials. J. Am. Chem. Soc. 129, 12588–12589 (2007).

    CAS  Google Scholar 

  116. 116

    Carrasco, J., Illas, F. & Bromley, S. T. Ultralow-density nanocage-based metal-oxide polymorphs. Phys. Rev. Lett. 99, 235502 (2007).

    Google Scholar 

  117. 117

    Lewis, D. W., Catlow, C. R. A., Thomas, J. M., Willock, D. J. & Hutchings, G. J. De novo design of structure-directing agents for the synthesis of microporous solids. Nature 382, 604–606 (1996).

    CAS  Google Scholar 

  118. 118

    Sankar, G. et al. Structure of templated microcrystalline DAF-5 (Co0.28Al0.72PO4C10H20N2) determined by synchrotron-based diffraction methods. Chem. Commun. 1, 117–118 (1998).

    Google Scholar 

  119. 119

    Hulme, A. T., Price, S. L. & Tocher, D. A. A new polymorph of 5-fluorouracil found following computational crystal structure predictions. J. Am. Chem. Soc. 127, 1116–1117 (2005).

    CAS  Google Scholar 

  120. 120

    Hamad, S., Moon, C., Catlow, C. R. A., Hulme, A. T. & Price, S. L. Kinetic insights into the role of the solvent in the polymorphism of 5-fluorouracil from molecular dynamics simulations. J. Phys. Chem. B 110, 3323–3329 (2006).

    CAS  Google Scholar 

  121. 121

    Lommerse, J. P. M. et al. A test of crystal structure prediction of small organic molecules. Acta Crystallogr. B 56, 697–714 (2000).

    CAS  Google Scholar 

  122. 122

    Neumann, M. A., Leusen, F. J. J. & Kendrick, J. A major advance in crystal structure prediction. Angew. Chem. Int. Ed. 47, 2427–2430 (2008).

    CAS  Google Scholar 

  123. 123

    Moult, J. A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Curr. Opin. Struct. Biol. 15, 285–289 (2005).

    CAS  Google Scholar 

  124. 124

    Petrey, D. & Honig, B. Protein structure prediction: Inroads to biology. Mol. Cell 20, 811–819 (2005).

    CAS  Google Scholar 

  125. 125

    Floudas, C. A., Fung, H. K., McAllister, S. R., Monnigmann, M. & Rajgaria, R. Advances in protein structure prediction and de novo protein design: A review. Chem. Eng. Sci. 61, 966–988 (2006).

    CAS  Google Scholar 

  126. 126

    Zhang, Y. Progress and challenges in protein structure prediction. Curr. Opin. Struct. Biol. 18, 342–348 (2008).

    CAS  Google Scholar 

  127. 127

    Jansen, M. A concept for synthesis planning in solid-state chemistry. Angew. Chem. Int. Ed. 41, 3746–3766 (2002).

    CAS  Google Scholar 

  128. 128

    Jansen, M. in Turning Points in Solid-State, Materials and Surface Science (eds Harris, K. M. & Edwards, P.) 22–50 (Royal Society of Chemistry, 2008).

    Google Scholar 

  129. 129

    Cancarevic, Z. P., Schön, J. C. & Jansen, M. Stability of alkali metal halide polymorphs as a function of pressure. Chem. Asian J. 3, 561–572 (2008).

    CAS  Google Scholar 

  130. 130

    Liebold-Ribeiro, Y., Fischer, D. & Jansen, M. Experimental substantiation of the 'Energy landscape concept' for solids: Synthesis of a new modification of LiBr. Angew. Chem. Int. Ed. 47, 4428–4431 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank R. G. Bell, S. Hamad, M. Jansen, S. L. Price, J. C. Schön, A. A. Sokol and J. M. Thomas for discussions, and the EPSRC for financial support via the Portfolio Partnership grant EP/D504872.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Scott M. Woodley.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Woodley, S., Catlow, R. Crystal structure prediction from first principles. Nature Mater 7, 937–946 (2008). https://doi.org/10.1038/nmat2321

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing