Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic

Abstract

An important strategy for realizing flexible electronics is to use solution-processable materials that can be directly printed and integrated into high-performance electronic components on plastic. Although examples of functional inks based on metallic, semiconducting and insulating materials have been developed, enhanced printability and performance is still a challenge. Printable high-capacitance dielectrics that serve as gate insulators in organic thin-film transistors are a particular priority. Solid polymer electrolytes (a salt dissolved in a polymer matrix) have been investigated for this purpose, but they suffer from slow polarization response, limiting transistor speed to less than 100 Hz. Here, we demonstrate that an emerging class of polymer electrolytes known as ion gels can serve as printable, high-capacitance gate insulators in organic thin-film transistors. The specific capacitance exceeds that of conventional ceramic or polymeric gate dielectrics, enabling transistor operation at low voltages with kilohertz switching frequencies.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Molecular structures of the ion-gel film components and frequency dependence of capacitance.
Figure 2: Schematic diagram and optical image of GEL-OTFTs and IV characteristics.
Figure 3: Optical image of an aerosol-printed transistor array, schematic diagrams of two devices and their electrical characterization.
Figure 4: Reproducibility and stability of printed GEL-OTFTs.
Figure 5: Scheme, optical micrograph and IDVG characteristics of a GEL-OTFT with a displaced gate electrode.

References

  1. Noh, Y.-Y., Zhao, N., Caironi, M. & Sirringhaus, H. Downscaling of self-aligned, all printed polymer thin-film transistors. Nature Nanotech. 2, 784–789 (2007).

    CAS  Article  Google Scholar 

  2. Berggren, M., Nilsson, D. & Robinson, N. D. Organic materials for printed electronics. Nature Mater. 6, 3–5 (2007).

    CAS  Article  Google Scholar 

  3. Xia, Y. & Friend, R. H. Nonlithographic patterning through inkjet printing via holes. Appl. Phys. Lett. 90, 253513 (2007).

    Article  Google Scholar 

  4. Liu, Y., Cui, T. & Varahramyan, K. All-polymer capacitor fabricated with inkjet printing technique. Solid State Electron. 47, 1543–1548 (2003).

    CAS  Article  Google Scholar 

  5. Crone, B. et al. Large-scale complementary integrated circuits based on organic transistors. Nature 403, 521–523 (2000).

    CAS  Article  Google Scholar 

  6. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    CAS  Article  Google Scholar 

  7. Comiskey, B., Albert, J. D., Yoshizawa, H. & Jacobson, J. An electrophoretic ink for all-printed reflective electronic displays. Nature 394, 253–255 (1998).

    CAS  Article  Google Scholar 

  8. Bharathan, J. & Yang, Y. Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo. Appl. Phys. Lett. 72, 2660–2662 (1998).

    CAS  Article  Google Scholar 

  9. Garnier, F., Hajlaoui, R., Yassar, A. & Srivastava, P. All-polymer field-effect transistor realized by printing techniques. Science 265, 1684–1686 (1994).

    CAS  Article  Google Scholar 

  10. Sekitani, T. et al. A large-area wireless power-transmission sheet using printed organic transistors and plastic MEMS switches. Nature Mater. 6, 413–417 (2007).

    CAS  Article  Google Scholar 

  11. Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428, 911–918 (2004).

    CAS  Article  Google Scholar 

  12. de Gans, B.-J., Duineveld, P. C. & Schubert, U. S. Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 16, 203–213 (2004).

    CAS  Article  Google Scholar 

  13. Street, R. A. et al. Jet printing flexible displays. Mater. Today 9, 32–37 (2006).

    CAS  Article  Google Scholar 

  14. Parashkov, R., Becker, E., Riedl, T., Johannes, H.-H. & Kowalsky, W. Large area electronics using printing methods. Proc. IEEE 93, 1321–1329 (2005).

    CAS  Article  Google Scholar 

  15. Rogers, J. A. et al. Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl Acad. Sci. 98, 4835–4840 (2001).

    CAS  Article  Google Scholar 

  16. Gundlach, D. J. Low power, high impact. Nature Mater. 6, 173–174 (2007).

    CAS  Article  Google Scholar 

  17. Yoon, M.-H., Yan, H., Facchetti, A. & Marks, T. J. Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. J. Am. Chem. Soc. 127, 10388–10395 (2005).

    CAS  Article  Google Scholar 

  18. Yoon, M.-H., Facchetti, A. & Marks, T. J. σπ molecular dielectric multilayers for low-voltage organic thin-film transistors. Proc. Natl Acad. Sci. 102, 4678–4682 (2005).

    CAS  Article  Google Scholar 

  19. Park, Y. D. et al. Low-voltage polymer thin-film transistors with a self-assembled monolayer as the gate dielectric. Appl. Phys. Lett. 87, 243509 (2005).

    Article  Google Scholar 

  20. Halik, M. et al. Low-voltage organic transistors with an amorphous molecular gate dielectric. Nature 431, 963–966 (2004).

    CAS  Article  Google Scholar 

  21. Naber, R. C. G. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Mater. 4, 243–248 (2005).

    CAS  Article  Google Scholar 

  22. Liu, Y., Varahramyan, K. & Cui, T. Low-voltage all-polymer field-effect transistor fabricated using an inkjet printing technique. Macromol. Rapid Commun. 26, 1955–1959 (2005).

    CAS  Article  Google Scholar 

  23. Andersson, P., Forchheimer, R., Tehrani, P. & Berggren, M. Printable all-organic electrochromic active-matrix displays. Adv. Funct. Mater. 17, 3074–3082 (2007).

    CAS  Article  Google Scholar 

  24. Dhoot, A. S. et al. Beyond the metal–insulator transition in polymer electrolyte gated polymer field-effect transistors. Proc. Natl Acad. Sci. 103, 11834–11837 (2006).

    CAS  Article  Google Scholar 

  25. Panzer, M. J. & Frisbie, C. D. Polymer electrolyte-gated field-effect transistors: Low-voltage, high-current switches for organic electronics and testbeds for probing electrical transport at high charge carrier density. J. Am. Chem. Soc. 129, 6599–6607 (2007).

    CAS  Article  Google Scholar 

  26. Facchetti, A., Yoon, M.-H. & Marks, T. J. Gate dielectrics for organic field-effect transistors: New opportunities for organic electronics. Adv. Mater. 17, 1705–1725 (2005).

    CAS  Article  Google Scholar 

  27. Panzer, M. J. & Frisbie, C. D. Polymer electrolyte gate dielectric reveals finite windows of high conductivity in organic thin film transistors at high charge carrier densities. J. Am. Chem. Soc. 127, 6960–6961 (2005).

    CAS  Article  Google Scholar 

  28. Shimotani, H., Asanuma, H., Takeya, J. & Iwasa, Y. Electrolyte-gated charge accumulation in organic single crystals. Appl. Phys. Lett. 89, 203501 (2006).

    Article  Google Scholar 

  29. Ozel, T., Gaur, A., Rogers, J. A. & Shim, M. Polymer electrolyte gating of carbon nanotube network transistors. Nano Lett. 5, 905–911 (2005).

    CAS  Article  Google Scholar 

  30. Susan, M. A. B. H., Kaketo, T., Noda, A. & Watanabe, M. Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 127, 4976–4983 (2005).

    CAS  Article  Google Scholar 

  31. Renn, M. J. Direct write system. US 7270844 (USA, 2007).

  32. Lee, J., Panzer, M. J., He, Y., Lodge, T. P. & Frisbie, C. D. Ion gel gated polymer thin-film transistor. J. Am. Chem. Soc. 129, 4532–4533 (2007).

    CAS  Article  Google Scholar 

  33. Cho, J. H. et al. High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 20, 686–690 (2008).

    CAS  Article  Google Scholar 

  34. He, Y. & Lodge, T. P. A thermoreversible ion gel by triblock copolymer self-assembly in an ionic liquid. Chem. Commun. 26, 2732–2734 (2007).

    Article  Google Scholar 

  35. He, Y., Boswell, P. G., Bühlmann, P. & Lodge, T. P. Ion gels by self-assembly of a triblock copolymer in an ionic liquid. J. Phys. Chem. B. 111, 4645–4652 (2007).

    CAS  Article  Google Scholar 

  36. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 1980).

    Google Scholar 

  37. Wang, D. et al. Germanium nanowire field-effect transistors with SiO2 and high-k HfO2 gate dielectrics. Appl. Phys. Lett. 83, 2432–2434 (2003).

    CAS  Article  Google Scholar 

  38. Kline, R. J., McGehee, M. D., Kadnikova, E. N., Liu, J. & Fréchet, J. M. J. Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv. Mater. 15, 1519–1522 (2003).

    CAS  Article  Google Scholar 

  39. Sirringhaus, H. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    CAS  Article  Google Scholar 

  40. Ong, B. S., Wu, Y., Liu, P. & Gardner, S. High-performance semiconducting polythiophenes for organic thin-film transistors. J. Am. Chem. Soc. 126, 3378–3379 (2004).

    CAS  Article  Google Scholar 

  41. Street, R. A. & Salleo, A. Contact effects in polymer transistors. Appl. Phys. Lett. 81, 2887–2889 (2002).

    CAS  Article  Google Scholar 

  42. Tanase, C., Meijer, E. J., Blom, P. W. M. & de Leeuw, D. M. Unification of the hole transport in polymeric field-effect transistors and light-emitting diodes. Phys. Rev. Lett. 91, 216601 (2003).

    CAS  Article  Google Scholar 

  43. Klauk, H. Organic Electronics: Materials, Manufacturing and Applications (Wiley–VCH, 2006).

    Book  Google Scholar 

  44. Sze, S. M. Semiconductor Devices: Physics and Technology (Wiley, 1999).

    Google Scholar 

  45. Takamiya, M. et al. An organic FET SRAM with back gate to increase static noise margin and its application to braille sheet display. IEEE J. Solid-State Circuits 42, 93–100 (2007).

    Article  Google Scholar 

  46. Herlogsson, L. et al. Low-voltage polymer field-effect transistors gated via a proton conductor. Adv. Mater. 19, 97–101 (2007).

    CAS  Article  Google Scholar 

  47. Paul, C. R. Fundamentals of Electric Circuit Analysis (Wiley, 2001).

    Google Scholar 

  48. Hadjichristidis, N., Pispas, S. & Floudas, G. Block Copolymers (Wiley, 2003).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2006-352-D00107 for J.H.C. and KRF-2006-214-D00061 for J.L.), and by the University of Minnesota Materials Research Science and Engineering Center funded by the NSF (DMR-0212302). Additional funding was provided by NSF through Award DMR-0406656 (T.P.L.). The authors would like to thank B. Kahn for initiating the University of Minnesota/Optomec collaboration, and R. Holmes for a critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Daniel Frisbie.

Supplementary information

Supplementary Information

Supplementary Information (PDF 810 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cho, J., Lee, J., Xia, Y. et al. Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nature Mater 7, 900–906 (2008). https://doi.org/10.1038/nmat2291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2291

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing