Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metal hydrides for lithium-ion batteries


Classical electrodes for Li-ion technology operate via an insertion/de-insertion process. Recently, conversion electrodes have shown the capability of greater capacity, but have so far suffered from a marked hysteresis in voltage between charge and discharge, leading to poor energy efficiency and voltages. Here, we present the electrochemical reactivity of MgH2 with Li that constitutes the first use of a metal-hydride electrode for Li-ion batteries. The MgH2 electrode shows a large, reversible capacity of 1,480 mAh g−1 at an average voltage of 0.5 V versus Li+/Li which is suitable for the negative electrode. In addition, it shows the lowest polarization for conversion electrodes. The electrochemical reaction results in formation of a composite containing Mg embedded in a LiH matrix, which on charging converts back to MgH2. Furthermore, the reaction is not specific to MgH2, as other metal or intermetallic hydrides show similar reactivity towards Li. Equally promising, the reaction produces nanosized Mg and MgH2, which show enhanced hydrogen sorption/desorption kinetics. We hope that such findings can pave the way for designing nanoscale active metal elements with applications in hydrogen storage and lithium-ion batteries.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Voltage profile and XRD patterns of MgH2 electrode at various stages of the conversion reaction.
Figure 2: Electrochemical and structural analysis proof for reversible conversion/formation of MgH2 in Li/MgH2 cell.
Figure 3: Electrochemical characterization of a MgH2 electrode.
Figure 4: Electrochemical reactivity and structural characterization of various metal hydrides towards Li.
Figure 5: Electrochemically prepared reactive MgH2 nanocomposite for hydrogen storage.


  1. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    CAS  Article  Google Scholar 

  2. Tirado, J.-L. Inorganic materials for the negative electrode of lithium-ion batteries: State-of-the art and future prospects. Mater. Sci. Eng. R 40, 103–136 (2003).

    Article  Google Scholar 

  3. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition metal oxides as negative electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000).

    CAS  Article  Google Scholar 

  4. Taberna, P-L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J.-M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567–573 (2006).

    CAS  Article  Google Scholar 

  5. Bruce, P. G., Scrosati, B. & Tarascon, J.-M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008).

    CAS  Article  Google Scholar 

  6. Schapbach, L. & Züttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    Article  Google Scholar 

  7. Seayad, A.-M. & Antonelli, M.-D. Recent advances in hydrogen storage in metal-containing inorganic nanostructures and related materials. Adv. Mater. 16, 765–777 (2004).

    CAS  Article  Google Scholar 

  8. Züttel, A. Materials for hydrogen storage. Mater. Today 24–33 (2003).

    Article  Google Scholar 

  9. Sandrock, G. Panoramic overview of hydrogen storage alloys from a gas reaction point of view. J. Alloys Compounds 293–295, 877–888 (1999).

    Article  Google Scholar 

  10. Huot, J., Liang, G., Boily, S., Neste, A. V. & Schulz, R. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J. Alloys Compounds 495, 293–295 (1999).

    Google Scholar 

  11. Fàtay, D., Révész, A. & Spassov, T. Particle size and catalytic effect on the dehydriding of MgH2 . J. Alloys Compounds 399, 237–241 (2005).

    Article  Google Scholar 

  12. Oelerich, W., Klassen, T. & Bormann, R. Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloys Compounds 315, 237–242 (2001).

    CAS  Article  Google Scholar 

  13. Herbstein, F. H. & Averbach, B. L. The structure of lithium magnesium solid solutions. Acta Metall. 4, 407–413 (1956).

    CAS  Article  Google Scholar 

  14. Shi, Z., Naik, D. & Gole, J. L. Electrochemical properties of Li–Mg alloy electrodes for lithium batteries. J. Power Sources 92, 70–80 (2001).

    CAS  Article  Google Scholar 

  15. Park, M., Kim, Y. U., Kim, H. & Sohn, H. J. Enhancement of the rate capability and cyclability of an Mg/C composite electrode for Li secondary batteries. J. Power sources 158, 1451–1455 (2006).

    CAS  Article  Google Scholar 

  16. Larcher, D. et al. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J. Mater. Chem. 17, 3759–3772 (2007).

    CAS  Article  Google Scholar 

  17. Tarascon, J.-M. et al. New concepts for the search of better electrode materials for rechargeable lithium batteries. C. R. Chimie 8, 9–15 (2005).

    CAS  Article  Google Scholar 

  18. Obrovac, M.N et al. Alloy design for lithium-ion battery anodes. J Electrochem. Soc. 154, A103–A108 (2007).

    CAS  Article  Google Scholar 

  19. Tarascon, J.-M., Grugeon, S., Laruelle, S., Larcher, D. & Poizot, P. in Lithium Batteries-Science and Technology (eds Nazri, G. A. & Pistoia, G.) Ch. 7 (Kluwer–Academic, 2003).

    Google Scholar 

  20. Gérard, N. & Ono, S. in Hydrogen in Intermetallic Compounds II Vol. 67, 44 (ed. Schlapbach, L.) 165–195 (Springer, 1992).

    Google Scholar 

  21. Reimann, A.-L. Clean-up of hydrogen by magnesium. Phil. Mag. 16, 673–686 (1933).

    CAS  Article  Google Scholar 

  22. Sandim, H. R. Z., Morante, B. V. & Suzuki, P. A. Kinetics of thermal decomposition of titanium hydride powder using in situ high-temperature X-ray diffraction (HTXRD). Mater. Res. 3, 293–297 (2005).

    Article  Google Scholar 

  23. Friedrichs, O., Kolodziejczyk, L., Sanchez-Lopez, J. C., Lopez-Cartes, C. & Fernandez, A. Synthesis of nanocrystalline MgH2 powder by gas-phase condensation and in situ hydridation: TEM, XPS and XRD study. J. Alloys Compounds 434–435, 721–724 (2007).

    Article  Google Scholar 

  24. de Jongh, P. E. et al. The preparation of carbon-supported magnesium nanoparticles using melt-infiltration. Chem. Mater. 19, 6052–6057 (2007).

    CAS  Article  Google Scholar 

  25. Haas, I. & Gedanken, A. Synthesis of metallic magnesium nanoparticles by sonoelectrochemistry. Chem. Commun. 1795–1797 (2008).

Download references


D. W. Murphy and M. Armand are gratefully acknowledged for their enlightening discussions. Moreover, we want to thank L. Dupont for carrying out the TEM study and M. Latroche for providing the AB5H5 sample.

Author information

Authors and Affiliations


Corresponding author

Correspondence to L. Aymard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oumellal, Y., Rougier, A., Nazri, G. et al. Metal hydrides for lithium-ion batteries. Nature Mater 7, 916–921 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing