Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two Ih-symmetry-breaking C60 isomers stabilized by chlorination

Abstract

One abiding surprise in fullerene science is that Ih-symmetric buckminsterfullerene C60 (ref. 1) (Ih–C60 or #1,812C60, the nomenclature specified by symmetry or by Fowler’s spiral algorithm2) remains the sole C60 species experimentally available. Setting it apart from the other 1,811 topological isomers (isobuckminsterfullerenes) is its exclusive conformity with the isolated-pentagon rule3, which states that stable fullerenes have isolated pentagons. Although gas-phase existence of isobuckminsterfullerenes has long been suspected4,5,6,7, synthetic efforts have yet to yield successful results. Here, we report the realization of two isobuckminsterfullerenes by means of chlorination of the respective C2v- and Cs-symmetric C60 cages. These chlorinated species, #1,809C60Cl8(1) and #1,804C60Cl12(2), were isolated in experimentally useful yields. Structural characterization by crystallography unambiguously established the unique pentagon–pentagon ring fusions. These distinct structural features are directly responsible for the regioselectivity observed in subsequent substitution of chlorines, and also render these unprecedented derivatives of C60 isomers important for resolving the long-standing puzzle of fullerene formation by the Stone–Wales transformation scheme8,9,10,11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of #1,809C60Cl8(1) and #1,804C60Cl12(2).
Figure 2: The synthesis of #1,809C60Cl4(C6H5)4.
Figure 3: Dechlorination of #1,809C60Cl8.
Figure 4: Thermal spray pyrolysis of chlorinated C60s.

Similar content being viewed by others

References

  1. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  2. Fowler, P. W. & Manolopoulos, D. E. An Atlas of Fullerenes (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  3. Kroto, H. W. The stability of the fullerenes Cn, with n=24, 28, 32, 36, 50, 60 and 70. Nature 329, 529–531 (1987).

    Article  CAS  Google Scholar 

  4. Yang, S. H., Pettiette, C. L., Conceicao, J., Cheshnovsky, O. & Smalley, R. E. UPS of buckminsterfullerene and other large clusters of carbon. Chem. Phys. Lett. 139, 233–238 (1987).

    Article  CAS  Google Scholar 

  5. Hunter, J., Fye, J. & Jarrold, M. F. Annealing C60+: Synthesis of fullerenes and large carbon rings. Science 260, 784–786 (1993).

    Article  CAS  Google Scholar 

  6. von Helden, G., Gotts, N. G. & Bowers, M. T. Experimental evidence for the formation of fullerenes by collisional heating of carbon rings in the gas phase. Nature 363, 60–63 (1993).

    Article  CAS  Google Scholar 

  7. Xie, S. Y., Deng, S. L., Huang, R. B., Yu, L. J. & Zheng, L. S. Five isomers of C60 generated in microwave plasma of chloroform. Chem. Phys. Lett. 343, 458–464 (2001).

    Article  CAS  Google Scholar 

  8. Stone, A. J. & Wales, D. J. Theoretical studies of icosahedral C60 and some related species. Chem. Phys. Lett. 128, 501–503 (1986).

    Article  CAS  Google Scholar 

  9. Hawkins, J. M., Nambu, M. & Meyer, A. Resolution and configurational stability of the chiral fullerenes C76, C78, and C84: A limit for the activation energy of the Stone–Wales transformation. J. Am. Chem. Soc. 116, 7642–7645 (1994).

    Article  CAS  Google Scholar 

  10. Austin, S.J., Fowler, P. W., Manolopoulos, D. E. & Zerbetto, F. The Stone–Wales map for C60 . Chem. Phys. Lett. 235, 146–151 (1995).

    Article  CAS  Google Scholar 

  11. Bettinger, H. F., Yakobson, B. I. & Scuseria, G. E. Scratching the surface of buckminsterfullerene: The barriers for Stone–Wales transformation through symmetric and asymmetric transition states. J. Am. Chem. Soc. 125, 5572–5580 (2003).

    Article  CAS  Google Scholar 

  12. Krätschmer, W., Lamb, L. D., Fostiropoulos, K. & Huffman, D. R. Solid C60: A new form of carbon. Nature 347, 354–358 (1990).

    Article  Google Scholar 

  13. Xie, S. Y. et al. Capturing the labile fullerene[50] as C50Cl10 . Science 304, 699–699 (2004).

    Article  CAS  Google Scholar 

  14. Chen, Z. F. The smaller fullerene C50, isolated as C50Cl10 . Angew. Chem. Int. Ed. 43, 4690–4691 (2004).

    CAS  Google Scholar 

  15. Lu, X. & Chen, Z. F. Curved π-conjugation, aromaticity, and the related chemistry of small fullerenes (<C60) and single-walled carbon nanotubes. Chem. Rev. 105, 3643–3696 (2005).

    Article  CAS  Google Scholar 

  16. Dunsch, L. & Yang, S. F. Metal nitride cluster fullerenes: Their current state and future prospects. Small 3, 1298–1320 (2007).

    Article  CAS  Google Scholar 

  17. Taylor, R. Surprises, serendipity, and symmetry in fullerene chemistry. Synlett 6, 776–793 (2000).

    Google Scholar 

  18. Taylor, R. Why fluorinate fullerenes? J. Fluor. Chem. 125, 359–368 (2004).

    Article  CAS  Google Scholar 

  19. Han, X. et al. Crystal structures of Saturn-like C50Cl10 and pineapple-shaped C64Cl4: Geometric implications of double- and triple-pentagon-fused chlorofullerenes. Angew. Chem. Int. Ed. 47, 5340–5343 (2008).

    Article  CAS  Google Scholar 

  20. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).

    Article  CAS  Google Scholar 

  21. Troshin, P. A. et al. Isolation of two seven-membered ring C58 fullerene derivatives: C58F17CF3 and C58F18 . Science 309, 278–281 (2005).

    Article  CAS  Google Scholar 

  22. Jia, J. F., Wu, H. S., Xu, X. H., Zhang, X. M. & Jiao, H. J. Fused five-membered rings determine the stability of C60F60 . J. Am. Chem. Soc. 130, 3985–3988 (2008).

    Article  CAS  Google Scholar 

  23. Chen, Z. F. & King, R. B. Spherical aromaticity: Recent work on fullerenes, polyhedral boranes, and related structures. Chem. Rev. 105, 3613–3642 (2005).

    Article  CAS  Google Scholar 

  24. Solomons, T. W. G. & Fryhle, C. B. Organic Chemistry 8th edn 672–673 (Wiley, New York, 2004).

    Google Scholar 

  25. Avent, A. G. et al. The structure of C60Ph5Cl and C60Cl5H, formed via electrophilic aromatic substitution. J. Chem. Soc. Chem. Commun. 1994, 1463–1464 (1994).

    Article  Google Scholar 

  26. Birkett, P. R. et al. Arylation of [60]fullerene via electrophilic aromatic substitution involving the electrophile C60Cl6: Frontside nucleophilic substitution of fullerenes. J. Chem. Soc. Perkin Trans. 2. 1997, 1121–1125 (1997).

    Article  Google Scholar 

  27. Hirsch, A. & Brettreich, M. Fullerenes: Chemistry and Reactions 279–282 (Wiley–VCH, Weinheim, 2005).

    Google Scholar 

  28. Haddon, R. C. π-electrons in three dimensions. Acc. Chem. Res. 21, 243–249 (1988).

    Article  CAS  Google Scholar 

  29. Goroff, N. S. Mechanism of fullerene formation. Acc. Chem. Res. 29, 77–83 (1996).

    Article  CAS  Google Scholar 

  30. Suenaga, K. et al. Imaging active topological defects in carbon nanotubes. Nature Nanotechnol. 2, 358–360 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge helpful discussions with R. F. Curl, Y. D. Li, L. B. Gan, Y. L. Li, G. M. Blackburn and N. F. Zheng. We thank Y. Q. Feng for HPLC support; H. Y. Huang, J. L. Ye, Q. He, L. Zhang, J. M. Li, W. Z. Wen and Y. S. Zhou for experimental support; and G. M. Blackburn for revising the English of the manuscript. This work was supported by the NNSF of China (grant nos 20525103, 20531050, 20721001, 20571062, 20425312) and the 973 Program (grant no. 2007CB815301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su-Yuan Xie.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1807 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, YZ., Liao, ZJ., Qian, ZZ. et al. Two Ih-symmetry-breaking C60 isomers stabilized by chlorination. Nature Mater 7, 790–794 (2008). https://doi.org/10.1038/nmat2275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2275

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing