Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Classical and quantum routes to linear magnetoresistance


The hallmark of materials science is the ability to tailor the microstructure of a given material to provide a desired response. Carbon mixed with iron provides the steel of buildings and bridges; impurities sprinkled in silicon single crystals form the raw materials of the electronics revolution; pinning centres in superconductors let them become powerful magnets. Here, we show that either adding a few parts per million of the proper chemical impurities to indium antimonide, a well-known semiconductor, or redesigning the material’s structure on the micrometre scale, can transform its response to an applied magnetic field. The former approach is purely quantum mechanical1,2,3; the latter a classical outgrowth of disorder4,5,6,7, turned to advantage. In both cases, the magnetoresistive response—at the heart of magnetic sensor technology—can be converted to a simple, large and linear function of field that does not saturate. Harnessing the effects of disorder has the further advantage of extending the useful applications range of such a magnetic sensor to very high temperatures by circumventing the usual limitations imposed by phonon scattering.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Doping InSb into the quantum regime.
Figure 2: Linear quantum magnetoresistance of single-crystal InSb.
Figure 3: Linear classical magnetoresistance in macroscopically inhomogeneous InSb.


  1. Abrikosov, A. A. Galvanomagnetic phenomena in metals in the quantum limit. Sov. Phys.—JETP 29, 746–753 (1969).

    Google Scholar 

  2. Abrikosov, A. A. Quantum magnetoresistance. Phys. Rev. B 58, 2788–2794 (1998).

    Article  CAS  Google Scholar 

  3. Abrikosov, A. A. Quantum linear magnetoresistance. Europhys. Lett. 49, 789–793 (2000).

    Article  CAS  Google Scholar 

  4. Parish, M. M. & Littlewood, P. B. Non-saturating magnetoresistance in heavily disordered semiconductors. Nature 426, 162–165 (2003).

    Article  CAS  Google Scholar 

  5. Parish, M. M. & Littlewood, P. B. Classical magnetotransport of inhomogeneous conductors. Phys. Rev. B 72, 094417 (2005).

    Article  Google Scholar 

  6. Hu, J. S., Rosenbaum, T. F. & Betts, J. B. Current jets, disorder, and linear magnetoresistance in the silver chalcogenides. Phys. Rev. Lett. 95, 186603 (2005).

    Article  Google Scholar 

  7. Hu, J. S., Parish, M. M. & Rosenbaum, T. F. Nonsaturating magnetoresistance of inhomogeneous conductors: Comparison of experiment and simulation. Phys. Rev. B 75, 214203 (2007).

    Article  Google Scholar 

  8. Olsen, J. L. Electron Transport in Metals (Interscience, New York, 1962).

    Google Scholar 

  9. Binasch, G., Grünberg, P., Saurenbach, F. & Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 39, 4828–4830 (1989).

    Article  CAS  Google Scholar 

  10. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  CAS  Google Scholar 

  11. von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L. & Samwer, K. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331–2333 (1993).

    Article  CAS  Google Scholar 

  12. von Molnar, S., Briggs, A., Flouquet, J. & Remenyi, G. Electron localization in a magnetic semiconductor Gd3−xvxS4 . Phys. Rev. Lett. 51, 706–709 (1983).

    Article  CAS  Google Scholar 

  13. Solin, S. A. et al. Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors. Science 289, 1530–1532 (2000).

    Article  CAS  Google Scholar 

  14. Herring, C. Effect of random inhomogeneities on electrical and galvanomagnetic measurements. J. Appl. Phys. 31, 1939–1953 (1960).

    Article  Google Scholar 

  15. Kapitza, P. L. The study of the specific resistance of bismuth crystals and its change in strong magnetic fields and some allied problems. Proc. R. Soc. London A 119, 358–443 (1928).

    Article  CAS  Google Scholar 

  16. Yang, F. Y. et al. Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284, 1335–1337 (1999).

    Article  CAS  Google Scholar 

  17. Breckenridge, R. G. et al. Electrical and optical properties of intermetallic compounds I. Indium antimonide. Phys. Rev. 96, 571–575 (1954).

    Article  CAS  Google Scholar 

  18. Heremans, J. Solid-state magnetic field sensors and applications. J. Phys. D 26, 1149–1168 (1993).

    Article  CAS  Google Scholar 

  19. Hrostowski, H. J., Morin, F. J., Geballe, T. H. & Wheatley, G. H. Hall effect and conductivity of InSb. Phys. Rev. 100, 1672–1676 (1955).

    Article  CAS  Google Scholar 

  20. Madelung, O. Physics of III–V Compounds (Wiley, New York, 1964).

    Google Scholar 

  21. Fritzsche, H. & Lark-Horovitz, K. Electrical properties of p-type indium antimonide at low temperatures. Phys. Rev. 99, 400–405 (1955).

    Article  CAS  Google Scholar 

  22. Frederikse, H. P. R. & Hosler, W. R. Galvanomagnetic effects in n-type indium antimonide. Phys. Rev. 108, 1136–1145 (1957).

    Article  Google Scholar 

  23. Xu, R. et al. Large magnetoresistance in non-magnetic silver chalcogenides. Nature 390, 57–60 (1997).

    Article  CAS  Google Scholar 

  24. Ogorelec, Z., Hamzic, A. & Basletic, M. On the optimization of the large magnetoresistance of Ag2Se. Europhys. Lett. 46, 56–61 (1999).

    Article  Google Scholar 

  25. Husmann, A. et al. MegaGauss sensors. Nature 417, 421–424 (2002).

    Article  CAS  Google Scholar 

  26. Lee, M., Rosenbaum, T. F., Saboungi, M.-L. & Schnyders, H. S. Band-gap tuning and linear magnetoresistance in silver chalcogenides. Phys. Rev. Lett. 88, 066602 (2002).

    Article  CAS  Google Scholar 

  27. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  Google Scholar 

  28. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  CAS  Google Scholar 

  29. Cheianov, V. V. et al. Random resistor network model of minimal conductivity in graphene. Phys. Rev. Lett. 99, 176801 (2007).

    Article  Google Scholar 

  30. Cheianov, V. V., Fal‘ko, V. & Altshuler, B. L. The focusing of electron flow and a Veselago lens in graphene. Science 315, 1252–1255 (2007).

    Article  CAS  Google Scholar 

Download references


The authors thank M. M. Parish for valuable discussions on the Parish–Littlewood model. The work at the University of Chicago was supported by DOE Basic Energy Sciences.

Author information

Authors and Affiliations



J.H. and T.F.R. contributed equally to all parts of the project.

Corresponding author

Correspondence to T. F. Rosenbaum.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hu, J., Rosenbaum, T. Classical and quantum routes to linear magnetoresistance. Nature Mater 7, 697–700 (2008).

Download citation

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing