Abstract
Rational design and synthesis of nanowires with increasingly complex structures can yield enhanced and/or novel electronic and photonic functions1,2. For example, Ge/Si core/shell nanowires have exhibited substantially higher performance as field-effect transistors3 and low-temperature quantum devices4,5 compared with homogeneous materials, and nano-roughened Si nanowires were recently shown to have an unusually high thermoelectric figure of merit6. Here, we report the first multi-quantum-well (MQW) core/shell nanowire heterostructures based on well-defined III-nitride materials that enable lasing over a broad range of wavelengths at room temperature. Transmission electron microscopy studies show that the triangular GaN nanowire cores enable epitaxial and dislocation-free growth of highly uniform (InGaN/GaN)n quantum wells with n=3, 13 and 26 and InGaN well thicknesses of 1–3 nm. Optical excitation of individual MQW nanowire structures yielded lasing with InGaN quantum-well composition-dependent emission from 365 to 494 nm, and threshold dependent on quantum well number, n. Our work demonstrates a new level of complexity in nanowire structures, which potentially can yield free-standing injection nanolasers.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Short-wave infrared cavity resonances in a single GeSn nanowire
Nature Communications Open Access 20 July 2023
-
Observation of polarity-switchable photoconductivity in III-nitride/MoSx core-shell nanowires
Light: Science & Applications Open Access 19 July 2022
-
Self-frequency-conversion nanowire lasers
Light: Science & Applications Open Access 29 April 2022
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Lieber, C. M. & Wang, Z. L. Functional nanowires. Mater. Res. Soc. Bull. 32, 99–104 (2007).
Li, Y., Qian, F., Xiang, J. & Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 9, 18–27 (2006).
Xiang, J. et al. Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 441, 489–493 (2006).
Xiang, J., Vidan, A., Tinkham, M., Westervelt, R. M. & Lieber, C. M. Ge/Si nanowire mesoscopic Josephson junctions. Nature Nanotechnol. 1, 208–213 (2006).
Hu, Y. et al. A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nature Nanotechnol. 2, 622–625 (2007).
Hochbaum, A. I. et al. Rough silicon nanowires as high performance thermoelectric materials. Nature 451, 163–168 (2008).
Mao, S. S. Nanolasers: lasing from nanoscale quantum wires. Int. J. Nanotechnol. 1, 42–85 (2004).
Chin, A. H. et al. Near-infrared semiconductor subwavelength-wire lasers. Appl. Phys. Lett. 88, 163115 (2006).
Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).
Johnson, J. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002).
Gradecak, S., Qian, F., Li, Y., Park, H. -G. & Lieber, C. M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 87, 173111 (2005).
Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003).
Zapien, J. et al. Room-temperature single nanoribbon lasers. Appl. Phys. Lett. 84, 1189–1191 (2004).
Liu, Y. K. et al. Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons. Adv. Mater. 17, 1372–1377 (2005).
Liu, Y. K., Zapien, J. A., Shan, Y. Y., Tang, H. & Lee, S. T. Wavelength-tunable lasing in single-crystal CdS1−XSeX nanoribbons. Nanotechnology 18, 365606 (2007).
Asada, M., Miyamoto, Y. & Suematsu, Y. Gain and the threshold of three dimensional quantum-box lasers. IEEE J. Quantum Electron. 22, 1915–1921 (1986).
Coldren, L. A. & Corzine, S. W. Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).
<http://cimewww.epfl.ch/people/stadelmann/jemsWebSite/jems.html>.
Northrup, J. E. & Neugebauer, J. Strong affinity of hydrogen for the GaN ( ) surface: Implications for molecular beam epitaxy and metalorganic chemical vapour deposition. Appl. Phys. Lett. 85, 3429–3431 (2004).
Ramvall, P., Riblet, P., Nomura, S., Aoyagi, Y. & Tanaka, S. Efficient observation of narrow isolated photoluminescence spectra from spatially localized excitons in InGaN quantum wells. Jpn. J. Appl. Phys. 44, L1381–L1384 (2005).
Wu, J. & Walukiewicz, W. Band gaps of InN and group III nitride alloys. Superlatt. Microstruct. 34, 63–75 (2003).
Qian, F., Gradecak, S., Li, Y., Wen, C.-Y. & Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano. Lett. 5, 2287–2291 (2005).
Nakamura, S., Pearton, S. & Fasol, G. The Blue Laser Diode: The Complete Story (Springer, Berlin, 2000).
Silfvast, W. T. Laser Fundamentals (Cambridge Univ. Press, Cambridge, 2005).
Martin, J. A. & Sanchez, M. Comparison between a graded and step-index optical cavity in InGaN MQW laser diodes. Semicond. Sci. Technol. 20, 290–295 (2005).
Chuang, S. L. Physics of Optoelectronic Devices (Wiley, New York, 1995).
Tawara, T., Gotch, H., Akasaka, T., Kobayashi, N. & Saitoh, T. Low-threshold lasing of InGaN vertical-cavity surface-emitting lasers with dielectric distributed Bragg reflectors. Appl. Phys. Lett. 83, 830–832 (2003).
Kawakami, Y. et al. In inhomogeneity and emission characteristics of InGaN. J. Phys. Condens. Matter 13, 6993–7010 (2001).
Yablonskii, G. P. et al. Luminescence and lasing in InGaN/GaN multiple quantum well heterostructures grown at different temperatures. Appl. Phys. Lett. 85, 5158–5160 (2004).
Takahashi, K., Yoshikawa, A. & Sandhu, A. Wide Bandgap Semiconductors: Fundamental Properties and Modern Photonic and Electronic Devices (Springer, New York, 2007).
Yablonskii, G. P. et al. Multiple quantum well InGaN/GaN blue optically pumped lasers operating in the spectral range of 450–470 nm. Phys. Status Solidi A 188, 79–82 (2001).
Javey, A., Nam, S., Friedman, R. S., Yan, H. & Lieber, C.M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano. Lett. 7, 773–777 (2007).
Acknowledgements
The authors thank C. J. Barrelet and Y. N. Wu for helpful discussions, P. Stadelmann for providing JEMS simulation software, R. Schalek for help with ultramicrotomy and A. J. Garratt-Reed for assistance in EDS elemental mapping measurements. This work was supported by the Air Force Office of Scientific Research (C.M.L.) and the Department of Energy Basic Energy Sciences, DE-FG02-07ER46394, (Z.L.W.).
Author information
Authors and Affiliations
Contributions
F.Q., Y.L. and Y.J.D. synthesized the nanowire structures. Y.L. and Y.D. carried out TEM characterization, S.G. carried out CBED studies and analysis, F.Q. carried out optical measurements and H.-G.P. carried out modelling studies. All authors contributed to the design of the experiments and data analysis. F.Q. and C.M.L. wrote the paper and all authors contributed to manuscript revisions.
Corresponding authors
Supplementary information
Supplementary Information
Supplementary Information, Methods and Figures S1–S4 (PDF 367 kb)
Rights and permissions
About this article
Cite this article
Qian, F., Li, Y., Gradečak, S. et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nature Mater 7, 701–706 (2008). https://doi.org/10.1038/nmat2253
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2253
This article is cited by
-
Short-wave infrared cavity resonances in a single GeSn nanowire
Nature Communications (2023)
-
Self-frequency-conversion nanowire lasers
Light: Science & Applications (2022)
-
Micro light-emitting diodes
Nature Electronics (2022)
-
Observation of polarity-switchable photoconductivity in III-nitride/MoSx core-shell nanowires
Light: Science & Applications (2022)
-
Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses
Nature Photonics (2021)