Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental visualization of lithium diffusion in LixFePO4

Abstract

Chemical energy storage using batteries will become increasingly important for future environmentally friendly (‘green’) societies. The lithium-ion battery is the most advanced energy storage system, but its application has been limited to portable electronics devices owing to cost and safety issues1. State-of-the-art LiFePO4 technology as a new cathode material with surprisingly high charge–discharge rate capability has opened the door for large-scale application of lithium-ion batteries such as in plug-in hybrid vehicles2,3,4,5. The scientific community has raised the important question of why a facile redox reaction is possible in the insulating material6,7,8,9,10,11,12,13,14. Geometric information on lithium diffusion is essential to understand the facile electrode reaction of LixFePO4 (0<x<1), but previous approaches have been limited to computational predictions15,16. Here, we provide long-awaited experimental evidence for a curved one-dimensional chain for lithium motion. By combining high-temperature powder neutron diffraction and the maximum entropy method, lithium distribution along the [010] direction was clearly visualized.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of LiFePO4 and possible lithium pathways.
Figure 2: Neutron diffraction patterns measured at two specific points in the FePO4–LiFePO4 binary phase diagram.
Figure 3: Anisotropic harmonic lithium vibration in LiFePO4 shown as green thermal ellipsoids and the expected diffusion path.
Figure 4: Nuclear distribution of lithium calculated by the MEM using neutron powder diffraction data measured for Li0.6FePO4 at 620 K.

References

  1. Armand, M. & Tarascon, J. M. Issues and challenges facing rechargeable batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  2. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

    Article  CAS  Google Scholar 

  3. Yamada, A., Chung, S. & Hinokuma, K. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 148, A224–A229 (2001).

    Article  CAS  Google Scholar 

  4. Huang, H., Yin, S.-C. & Nazar, L. F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett. 4, A170–A172 (2001).

    Article  CAS  Google Scholar 

  5. Chung, S. Y., Bloking, J. T. & Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrode. Nature Mater. 1, 123–128 (2002).

    Article  CAS  Google Scholar 

  6. Delacourt, C., Poizot, P., Tarascon, J. M. & Masquelier, C. The existence of a temperature-driven solid solution in LixFePO4 for 0&lt;x&lt;1. Nature Mater. 4, 254–260 (2005).

    Article  CAS  Google Scholar 

  7. Yamada, A., Koizumi, H., Sonoyama, N. & Kanno, R. Phase change in LixFePO4 . Electrochem. Solid-State Lett. 8, A409–A413 (2005).

    Article  CAS  Google Scholar 

  8. Yamada, A. et al. Room-temperature miscibility gap in LixFePO4 . Nature Mater. 5, 357–360 (2006).

    Article  CAS  Google Scholar 

  9. Meethong, N., Huang, H.-Y. S., Carter, W. C. & Chiang, Y.-M. Size-dependent lithium miscibility gap in nanoscale Li1−xFePO4 . Electrochem. Solid-State Lett. 10, A134–A138 (2007).

    Article  CAS  Google Scholar 

  10. Maxisch, T., Zhou, F. & Ceder, G. Ab initio study of the migration of small polarons in olivine LixFePO4 and their association with lithium ions and vacancies. Phys. Rev. B 73, 104301 (2006).

    Article  Google Scholar 

  11. Ellis, B., Perry, L. K., Ryan, D. H. & Nazar, L. F. Small polaron hopping in LixFePO4 solid solutions: Coupled lithium-ion and electron mobility. J. Am. Chem. Soc. 128, 11416–11422 (2006).

    Article  CAS  Google Scholar 

  12. Chen, G., Song, X. & Richardson, T. J. Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid-State Lett. 9, A295–A298 (2006).

    Article  CAS  Google Scholar 

  13. Laffont, L. et al. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 18, 5520–5529 (2006).

    Article  CAS  Google Scholar 

  14. Allen, J., Jow, T. & Wolfenstine, J. Kinetic study of the electrochemical FePO4 to LiFePO4 phase transition. Chem. Mater. 2108–2111 (2007).

  15. Morgan, D., der Ven, A. V. & Ceder, G. Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid-State Lett. 7, A30–A32 (2004).

    Article  CAS  Google Scholar 

  16. Islam, M., Driscoll, D., Fisher, C. & Slater, P. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 17, 5085–5092 (2005).

    Article  CAS  Google Scholar 

  17. Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0&lt;x&lt;1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    Article  CAS  Google Scholar 

  18. Yazami, R. & Touzain, P. A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 9, 365–371 (1983).

    Article  CAS  Google Scholar 

  19. Nagaura, T. & Tozawa, K. Development of rechargeable lithium batteries. II. Lithium ion rechargeable battery. Prog. Batteries Solar Cells 9, 209–217 (1991).

    Google Scholar 

  20. Dodd, J., Yazami, R. & Fultz, B. Phase diagram of LixFePO4 . Electrochem. Solid-State Lett. 9, A151–A155 (2006).

    Article  CAS  Google Scholar 

  21. Dodd, J., Halevy, I. & Fultz, B. Valence fluctuations of 57Fe in disordered Li0.6FePO4 . J. Phys. Chem. C 111, 1563–1566 (2007).

    Article  CAS  Google Scholar 

  22. Gull, S. F. & Daniel, G. J. Image reconstruction from incomplete and noisy data. Nature 272, 686–690 (1978).

    Article  Google Scholar 

  23. Collins, D. M. Electron density images from imperfect data by iterative entropy maximization. Nature 298, 49–51 (1982).

    Article  CAS  Google Scholar 

  24. Schotte, K.-D., Schotte, U., Bleif, H.-J. & Papoular, R. Maximum-entropy analysis of the cubic phases of KOH and KOD, NaOH and NaOD. Acta Crystallogr. A 51, 739–746 (1995).

    Article  Google Scholar 

  25. Shikanai, F. et al. Neutron powder diffraction study on the high-temperature phase of K3H(SeO4)2 . Physica B 385–386, 156–159 (2006).

    Article  Google Scholar 

  26. Yashima, M., Itoh, M., Inaguma, Y. & Morii, Y. Crystal structure and diffusion path in the fast lithium-ion conductor La0.62Li0.16TiO3 . J. Am. Chem. Soc. 127, 3491–3495 (2005).

    Article  CAS  Google Scholar 

  27. Yashima, M. et al. Conduction path and disorder in the fast oxide-ion conductor (La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)O2.8 . Chem. Phys. Lett. 380, 391–396 (2003).

    Article  CAS  Google Scholar 

  28. Izumi, F. & Ikeda, T. A Rietveld-analysis program RIETAN-98 and its applications to zeolites. Mater. Sci. Forum 321–324, 198–205 (2000).

    Article  Google Scholar 

  29. Momma, K. & Izumi, F. VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Y. Yamaguchi, M. Yonemura, H. Koizumi and K. Nemoto for their support in the neutron diffraction experiments. This work was financially supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan, through a Grant-in-Aid for Scientific Research (A) No. 19205027, and the New Energy and Industrial Technology Development Organization (NEDO). JSPS fellowship No. 19.10259 is greatly appreciated by S.N.

Author information

Authors and Affiliations

Authors

Contributions

S.N. carried out sample preparation, room-temperature neutron diffraction experiments at VEGA, structure analysis, MEM analysis and all of the related work in supporting information, G.K. carried out sample preparation and the high-temperature neutron diffraction (HT-ND) experiments at HERMES, K.O. set up the equipment for the HT-ND experiments at HERMES, R.K. co-supervised the project, M.Y. supervised the HT-ND experiments at HERMES, A.Y. conceived, supervised and coordinated the whole project. S.N. and A.Y. wrote the manuscript.

Corresponding author

Correspondence to Atsuo Yamada.

Supplementary information

Supplementary Information

Supplementary Figures S1–S6 and Tables S1 & S2 (PDF 3334 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimura, Si., Kobayashi, G., Ohoyama, K. et al. Experimental visualization of lithium diffusion in LixFePO4. Nature Mater 7, 707–711 (2008). https://doi.org/10.1038/nmat2251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing