Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4


Classical electrodes for Li-ion technology operate by either single-phase or two-phase Li insertion/de-insertion processes, with single-phase mechanisms presenting some intrinsic advantages with respect to various storage applications. We report the feasibility to drive the well-established two-phase room-temperature insertion process in LiFePO4 electrodes into a single-phase one by modifying the material’s particle size and ion ordering. Electrodes made of LiFePO4 nanoparticles (40 nm) formed by a low-temperature precipitation process exhibit sloping voltage charge/discharge curves, characteristic of a single-phase behaviour. The presence of defects and cation vacancies, as deduced by chemical/physical analytical techniques, is crucial in accounting for our results. Whereas the interdependency of particle size, composition and structure complicate the theorists’ attempts to model phase stability in nanoscale materials, it provides new opportunities for chemists and electrochemists because numerous electrode materials could exhibit a similar behaviour at the nanoscale once their syntheses have been correctly worked out.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: XRD patterns of S40 and S140 nanosized LiFePO4.
Figure 2: Characterization of the 40 nm nanosized LiFePO4 sample.
Figure 3: Rietveld refinement of the 40 nm (S40) nanosized LiFePO4.
Figure 4: Electrochemical characterizations of the 40 nm (S40) LiFePO4 and carbon-coated nano-LiFePO4.
Figure 5: Electrochemical and structural characterization of the 40 nm (S40) LiFePO4.
Figure 6: Unit-cell parameters as a function of x lithium extracted in 40 nm (S40) nanosized LixFePO4.

Similar content being viewed by others


  1. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  2. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive electrode materials for lithium batteries. J. Electrochem. Soc 144, 1188–1194 (1997).

    Article  CAS  Google Scholar 

  3. Ravet, N. et al. Improved iron-based cathode material. Abstract # 127, 196th Meeting of the Electrochemical Society, Hawai (1999).

  4. Armand, M., Gauthier, M., Magnan, J. -F. & Ravet, N. Method for synthesis of carbon-coated redox materials with controlled size. World Patent WO 02/27823 A1 (2002).

  5. Nuspl, G., Wimmer, L. & Eisgruber, M. Lithium metal phosphates, method for producing the same and use thereof as electrode material. World Patent WO 2005/051840 A1 (2005).

  6. Delacourt, C., Poizot, P., Levasseur, S. & Masquelier, C. Size effects on carbon free LiFePO4 powders: The key to superior energy density. Electrochem. Solid State Lett. 9, A352–A355 (2006).

    Article  CAS  Google Scholar 

  7. Yamada, A. et al. Room-temperature miscibility gap in LixFePO4 . Nature Mater. 5, 357–360 (2006).

    Article  CAS  Google Scholar 

  8. Yamada, A., Koizumi, H., Sonoyama, N. & Kanno, R. Phase changes in LixFePO4 . Electrochem. Solid State Lett. 8, A409–A413 (2005).

    Article  CAS  Google Scholar 

  9. Meetong, N., Huang, H., Speakman, S., Carter, W. C. & Chiang, Y. M. Strain accommodation during phase transformations in olivine-based cathodes as a materials selection criterion for high-power rechargeable batteries. Adv. Funct. Mater. 17, 1115–1123 (2007).

    Article  Google Scholar 

  10. Delacourt, C., Poizot, P., Tarascon, J.M & Masquelier, C. The existence of a temperature-driven solid solution for 0≤x≤1 in LixFePO4 . Nature Mater. 4, 254–260 (2005).

    Article  CAS  Google Scholar 

  11. Zhou, F., Marianetti, C. A., Cococcioni, M., Morgan, D. & Ceder, G. Phase separation in LixFePO4 induced by correlation effects. Phys. Rev. B 69, 201101(R) (2004).

    Article  Google Scholar 

  12. Meetong, N., Huang, H., Carter, W. C. & Chiang, Y. M. Size-dependent lithium miscibility gap in nanoscale Li1−xFePO4 . Electrochem. Solid State Lett. 10, A134–A138 (2007).

    Article  Google Scholar 

  13. Delacourt, C., Poizot, P. & Masquelier, C. Crystalline nanometric LiFePO4. World Patent, CNRS-UMICORE, #WO 2007/0051 (2007).

  14. Rousse, G., Rodriguez-Carvajal, J., Patoux, S. & Masquelier, C. Magnetic structures of the triphylite LiFePO4 and of its delithiated form FePO4 . Chem. Mater. 15, 4082–4090 (2003).

    Article  CAS  Google Scholar 

  15. Santoro, R. P. & Newmann, R. E. Antiferromagnetism in LiFePO4 . Acta Cryst. 22, 344–347 (1967).

    Article  CAS  Google Scholar 

  16. Delacourt, C., Roriguez-Carvajal, J., Schmidt, B., Tarascon, J. M. & Masquelier, C. Crystal chemistry of the olivine-type LixFePO4 system (0≤x≤1) between 25 and 370 C. Solid State Sci. 7, 1506–1516 (2005).

    Article  CAS  Google Scholar 

  17. Islam, S. M., Driscoll, D. J., Fisher, C. A. J. & Slater, P. R. Chem. Mater. 17, 5085–5092 (2005).

    Article  CAS  Google Scholar 

  18. Chen, J. & Whittingham, M. S. Hydrothermal synthesis of lithium iron phosphate. Electron. Commun. 8, 855–858 (2006).

    Article  CAS  Google Scholar 

  19. Kim, D. H. & Kim, J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid State Lett. 9, A439–A442 (2006).

    Article  CAS  Google Scholar 

  20. Yamada, A. et al. Intermediate phases in LixFePO4 . Mater. Res. Soc. Symp. Proc. 972, 257–264 (2007).

    CAS  Google Scholar 

  21. Maier, J. & Amin, R. Defect chemistry of LiFePO4 . J. Electrochem. Soc. 155, A339–A344 (2008).

    Article  CAS  Google Scholar 

  22. Fisher, C. A. J. & Islam, M. S. Surface structures and crystal morphologies of LiFePO4: Relevance to electrochemical behaviour. J. Mater. Chem. 18, 1209–1215 (2008).

    Article  CAS  Google Scholar 

  23. Gaberscek, M., Dominko, R. & Jamnik, J. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun. 9, 2778–2783 (2007).

    Article  CAS  Google Scholar 

  24. Rodríguez-Carvajal, J. Recent advances in magnetic-structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  Google Scholar 

  25. Rodríguez-Carvajal, J. Recent Developments of the Program FULLPROF, in CPD Newsletter 2001, 26, 12, available at <>.

  26. Thompson, P., Cox, D. E. & and Hastings, J. B. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3 . J. Appl. Crystallogr. 20, 79–83 (1987).

    Article  CAS  Google Scholar 

  27. Jarvinen, M. Application of symmetrized harmonics expansion to correction of the preferred orientation effect. J. Appl. Crystallogr. 26, 525–531 (1993).

    Article  CAS  Google Scholar 

  28. González-Platas, J. & Rodríguez-Carvajal, J. Graphic Fourier Program GFOURIER, Version 04.02. Univ. La Laguna, Tenerife, Spain, 2002.

  29. Rodríguez-Carvajal, J., Fernández-Díaz, M. T. & Martínez, J. L. Neutron-diffraction study on structural and magnetic-properties of La2NiO4 . J. Phys. Condens. Matter 3, 3215–3234 (1991).

    Article  Google Scholar 

Download references


We are grateful to C. Delacourt and D. W. Murphy for enlightening discussions and to J. Rodriguez Carvajal at ILL Grenoble for his help in collecting the neutron diffraction patterns.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Christian Masquelier.

Supplementary information

Supplementary Information

Supplementary Figures S1–S2 & Tables S1–S2 (PDF 1191 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibot, P., Casas-Cabanas, M., Laffont, L. et al. Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nature Mater 7, 741–747 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing