Article | Published:

Towards non-blinking colloidal quantum dots

Nature Materials volume 7, pages 659664 (2008) | Download Citation

Subjects

Abstract

At a single-molecule level, fluorophore emission intensity fluctuates between bright and dark states. These fluctuations, known as blinking, limit the use of fluorophores in single-molecule experiments. The dark-state duration shows a universal heavy-tailed power-law distribution characterized by the occurrence of long non-emissive periods. Here we have synthesized novel CdSe–CdS core–shell quantum dots with thick crystalline shells, 68% of which do not blink when observed individually at 33 Hz for 5 min. We have established a direct correlation between shell thickness and blinking occurrences. Importantly, the statistics of dark periods that appear at high acquisition rates (1 kHz) are not heavy tailed, in striking contrast with previous observations. Blinking statistics are thus not as universal as thought so far. We anticipate that our results will help to better understand the physico-chemistry of single-fluorophore emission and rationalize the design of other fluorophores that do not blink.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Single pentacene molecules detected by fluorescence excitation in a para-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

  2. 2.

    & Probing single-molecule dynamics. Science 265, 361–364 (1994).

  3. 3.

    & Illuminating single molecules in condensed matter. Science 283, 1670–1673 (1999).

  4. 4.

    , , & Luminescence of individual porous Si chromophores. Phys. Rev. Lett. 80, 5405–5408 (1998).

  5. 5.

    et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

  6. 6.

    , , , & ‘On’/‘off’ fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys. 115, 1028–1040 (2001).

  7. 7.

    et al. Fluorescence intermittency in single InP quantum dots. Nano Lett. 1, 557–564 (2001).

  8. 8.

    , , , & Power-law blinking in the fluorescence of single organic molecules. ChemPhysChem 8, 823–833 (2007).

  9. 9.

    , , , & Power-law-distributed dark states are the main pathway for photobleaching of single organic molecules. Phys. Rev. Lett. 95, 097401 (2005).

  10. 10.

    , & Influence of self-trapped states on the fluorescence intermittency of single molecules. Appl. Phys. Lett. 87, 051915 (2005).

  11. 11.

    , , , & Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: A universal power law behavior. J. Chem. Phys. 112, 3117–3120 (2000).

  12. 12.

    et al. Statistical aging and nonergodicity in the fluorescence of single nanocrystals. Phys. Rev. Lett. 90, 120601 (2003).

  13. 13.

    , , & Photon counting statistics for blinking CdSe–ZnS quantum dots: A Levy walk process. J. Phys. Chem. B 110, 19053–19060 (2006).

  14. 14.

    , , & Photoblinking of rhodamine 6G in poly(vinyl alcohol): Radical dark state formed through the triplet. J. Phys. Chem. A 107, 6770–6776 (2003).

  15. 15.

    et al. Blinking statistics in single semiconductor nanocrystal quantum dots. Phys. Rev. B 6320, 205316 (2001).

  16. 16.

    , , , & Modeling distributed kinetics in isolated semiconductor quantum dots. Phys. Rev. B 67, 125304 (2003).

  17. 17.

    & Explanation of quantum dot blinking without the long-lived trap hypothesis. Phys. Rev. B 72, 155321 (2005).

  18. 18.

    , , , & Synthesis of high quality zinc blende CdSe nanocrystals. J. Phys. Chem. B 109, 10533–10537 (2005).

  19. 19.

    et al. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 3, 1677–1681 (2003).

  20. 20.

    , , , & Shell distribution on colloidal CdSe/ZnS quantum dots. Nano Lett. 5, 565–570 (2005).

  21. 21.

    & Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc. 126, 1324–1325 (2004).

  22. 22.

    , , , & Continuous distribution of emission states from single CdSe/ZnS quantum dots. Nano Lett. 6, 843–847 (2006).

  23. 23.

    , , , & Blinking and surface chemistry of single CdSe nanocrystals. Small 2, 204–208 (2006).

  24. 24.

    , , & Effect of the shell on the blinking statistics of core–shell quantum dots: A single-particle fluorescence study. Phys. Rev. B 75, 125431 (2007).

  25. 25.

    , , & Mn2+ as a radial pressure gauge in colloidal core/shell nanocrystals. Phys. Rev. Lett. 99, 265501 (2007).

  26. 26.

    , & Power-law intermittency of single emitters. Curr. Opin. Colloid Interface Sci. 12, 272–284 (2007).

  27. 27.

    & Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 78, 1110–1113 (1997).

  28. 28.

    & Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles. Phys. Rev. Lett. 95, 107401 (2005).

  29. 29.

    & Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots. J. Chem. Phys. 123, 054704 (2005).

  30. 30.

    , & Simple model for the power-law blinking of single semiconductor nanocrystals. Phys. Rev. B 66, 233202 (2002).

  31. 31.

    , , , & Single nonblinking CdTe quantum dots synthesized in aqueous thiopropionic acid. Angew. Chem. Int. Ed. 45, 7588–7591 (2006).

  32. 32.

    et al. Air-induced fluorescence bursts from single semiconductor nanocrystals. Appl. Phys. Lett. 85, 381–383 (2004).

Download references

Acknowledgements

We thank P. Guyot-Sionnest for critical and enlightening discussions concerning the work and the redaction of the manuscript. B.M. thanks T. Pons for providing the software code for the automated analysis of QD blinking. B.D. thanks the Human Frontier Science Program for funding. B.D. and J.-P.H. acknowledge funding from l’Agence Nationale de la Recherche and La Région Ile-de-France.

Author information

Affiliations

  1. Laboratoire Photons Et Matière, CNRS UPR5, ESPCI 10 rue Vauquelin, 75231 Paris, France

    • Benoit Mahler
    •  & Benoit Dubertret
  2. Laboratoire Kastler Brossel, CNRS UMR8552, Université Pierre et Marie Curie, Ecole normale supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France

    • Piernicola Spinicelli
    •  & Jean-Pierre Hermier
  3. Groupe d’Etude de la Matière Condensée, CNRS UMR8635, Université de Versailles Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France

    • Stéphanie Buil
    • , Xavier Quelin
    •  & Jean-Pierre Hermier

Authors

  1. Search for Benoit Mahler in:

  2. Search for Piernicola Spinicelli in:

  3. Search for Stéphanie Buil in:

  4. Search for Xavier Quelin in:

  5. Search for Jean-Pierre Hermier in:

  6. Search for Benoit Dubertret in:

Corresponding authors

Correspondence to Jean-Pierre Hermier or Benoit Dubertret.

Supplementary information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat2222

Further reading