Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Towards non-blinking colloidal quantum dots

Abstract

At a single-molecule level, fluorophore emission intensity fluctuates between bright and dark states. These fluctuations, known as blinking, limit the use of fluorophores in single-molecule experiments. The dark-state duration shows a universal heavy-tailed power-law distribution characterized by the occurrence of long non-emissive periods. Here we have synthesized novel CdSe–CdS core–shell quantum dots with thick crystalline shells, 68% of which do not blink when observed individually at 33 Hz for 5 min. We have established a direct correlation between shell thickness and blinking occurrences. Importantly, the statistics of dark periods that appear at high acquisition rates (1 kHz) are not heavy tailed, in striking contrast with previous observations. Blinking statistics are thus not as universal as thought so far. We anticipate that our results will help to better understand the physico-chemistry of single-fluorophore emission and rationalize the design of other fluorophores that do not blink.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of core–shell CdSe–CdS nanocrystals with reduced blinking.
Figure 2: Intensity fluctuations and blinking behaviour of single CdSe–CdS QDs visualized with a CCD camera.
Figure 3: Intensity fluctuations of single CdSe–CdS and CdSe–ZnS QDs measured with avalanche photodiodes.
Figure 4: Cumulative distributions of off times in a logarithmic scale.

Similar content being viewed by others

References

  1. Orrit, M. & Bernard, J. Single pentacene molecules detected by fluorescence excitation in a para-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

    Article  CAS  Google Scholar 

  2. Xie, X. S. & Dunn, R. C. Probing single-molecule dynamics. Science 265, 361–364 (1994).

    Article  CAS  Google Scholar 

  3. Moerner, W. E. & Orrit, M. Illuminating single molecules in condensed matter. Science 283, 1670–1673 (1999).

    Article  CAS  Google Scholar 

  4. Mason, M. D., Credo, G. M., Weston, K. D. & Buratto, S. K. Luminescence of individual porous Si chromophores. Phys. Rev. Lett. 80, 5405–5408 (1998).

    Article  CAS  Google Scholar 

  5. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    Article  CAS  Google Scholar 

  6. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. ‘On’/‘off’ fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys. 115, 1028–1040 (2001).

    Article  CAS  Google Scholar 

  7. Kuno, M. et al. Fluorescence intermittency in single InP quantum dots. Nano Lett. 1, 557–564 (2001).

    Article  CAS  Google Scholar 

  8. Hoogenboom, J. P., Hernando, J., van Dijk, E., van Hulst, N. F. & Garcia-Parajo, M. F. Power-law blinking in the fluorescence of single organic molecules. ChemPhysChem 8, 823–833 (2007).

    Article  CAS  Google Scholar 

  9. Hoogenboom, J. P., van Dijk, E., Hernando, J., van Hulst, N. F. & Garcia-Parajo, M. F. Power-law-distributed dark states are the main pathway for photobleaching of single organic molecules. Phys. Rev. Lett. 95, 097401 (2005).

    Article  Google Scholar 

  10. Schuster, J., Cichos, F. & von Borczyskowski, C. Influence of self-trapped states on the fluorescence intermittency of single molecules. Appl. Phys. Lett. 87, 051915 (2005).

    Article  Google Scholar 

  11. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. Nonexponential ‘blinking’ kinetics of single CdSe quantum dots: A universal power law behavior. J. Chem. Phys. 112, 3117–3120 (2000).

    Article  CAS  Google Scholar 

  12. Brokmann, X. et al. Statistical aging and nonergodicity in the fluorescence of single nanocrystals. Phys. Rev. Lett. 90, 120601 (2003).

    Article  CAS  Google Scholar 

  13. Margolin, G., Protasenko, V., Kuno, M. & Barkai, E. Photon counting statistics for blinking CdSe–ZnS quantum dots: A Levy walk process. J. Phys. Chem. B 110, 19053–19060 (2006).

    Article  CAS  Google Scholar 

  14. Zondervan, R., Kulzer, F., Orlinskii, S. B. & Orrit, M. Photoblinking of rhodamine 6G in poly(vinyl alcohol): Radical dark state formed through the triplet. J. Phys. Chem. A 107, 6770–6776 (2003).

    Article  CAS  Google Scholar 

  15. Shimizu, K. T. et al. Blinking statistics in single semiconductor nanocrystal quantum dots. Phys. Rev. B 6320, 205316 (2001).

    Article  Google Scholar 

  16. Kuno, M., Fromm, D. P., Johnson, S. T., Gallagher, A. & Nesbitt, D. J. Modeling distributed kinetics in isolated semiconductor quantum dots. Phys. Rev. B 67, 125304 (2003).

    Article  Google Scholar 

  17. Frantsuzov, P. A. & Marcus, R. A. Explanation of quantum dot blinking without the long-lived trap hypothesis. Phys. Rev. B 72, 155321 (2005).

    Article  Google Scholar 

  18. Mohamed, M. B., Tonti, D., Al-Salman, A., Chemseddine, A. & Chergui, M. Synthesis of high quality zinc blende CdSe nanocrystals. J. Phys. Chem. B 109, 10533–10537 (2005).

    Article  CAS  Google Scholar 

  19. Talapin, D. V. et al. Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 3, 1677–1681 (2003).

    Article  CAS  Google Scholar 

  20. Yu, Z. H., Guo, L., Du, H., Krauss, T. & Silcox, J. Shell distribution on colloidal CdSe/ZnS quantum dots. Nano Lett. 5, 565–570 (2005).

    Article  CAS  Google Scholar 

  21. Hohng, S. & Ha, T. Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc. 126, 1324–1325 (2004).

    Article  CAS  Google Scholar 

  22. Zhang, K., Chang, H. Y., Fu, A. H., Alivisatos, A. P. & Yang, H. Continuous distribution of emission states from single CdSe/ZnS quantum dots. Nano Lett. 6, 843–847 (2006).

    Article  Google Scholar 

  23. Gomez, D. E., van Embden, J., Jasieniak, J., Smith, T. A. & Mulvaney, P. Blinking and surface chemistry of single CdSe nanocrystals. Small 2, 204–208 (2006).

    Article  CAS  Google Scholar 

  24. Heyes, C. D., Kobitski, A. Y., Breus, V. V. & Nienhaus, G. U. Effect of the shell on the blinking statistics of core–shell quantum dots: A single-particle fluorescence study. Phys. Rev. B 75, 125431 (2007).

    Article  Google Scholar 

  25. Ithurria, S., Guyot-Sionnest, P., Mahler, B. & Dubertret, B. Mn2+ as a radial pressure gauge in colloidal core/shell nanocrystals. Phys. Rev. Lett. 99, 265501 (2007).

    Article  Google Scholar 

  26. Cichos, F., von Borczyskowski, C. & Orrit, M. Power-law intermittency of single emitters. Curr. Opin. Colloid Interface Sci. 12, 272–284 (2007).

    Article  CAS  Google Scholar 

  27. Efros, A. L. & Rosen, M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 78, 1110–1113 (1997).

    Article  CAS  Google Scholar 

  28. Tang, J. & Marcus, R. A. Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles. Phys. Rev. Lett. 95, 107401 (2005).

    Article  Google Scholar 

  29. Tang, J. & Marcus, R. A. Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots. J. Chem. Phys. 123, 054704 (2005).

    Article  Google Scholar 

  30. Verberk, R., van Oijen, A. M. & Orrit, M. Simple model for the power-law blinking of single semiconductor nanocrystals. Phys. Rev. B 66, 233202 (2002).

    Article  Google Scholar 

  31. He, H., Qian, H. F., Dong, C. Q., Wang, K. L. & Ren, J. C. Single nonblinking CdTe quantum dots synthesized in aqueous thiopropionic acid. Angew. Chem. Int. Ed. 45, 7588–7591 (2006).

    Article  CAS  Google Scholar 

  32. Muller, J. et al. Air-induced fluorescence bursts from single semiconductor nanocrystals. Appl. Phys. Lett. 85, 381–383 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Guyot-Sionnest for critical and enlightening discussions concerning the work and the redaction of the manuscript. B.M. thanks T. Pons for providing the software code for the automated analysis of QD blinking. B.D. thanks the Human Frontier Science Program for funding. B.D. and J.-P.H. acknowledge funding from l’Agence Nationale de la Recherche and La Région Ile-de-France.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Pierre Hermier or Benoit Dubertret.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahler, B., Spinicelli, P., Buil, S. et al. Towards non-blinking colloidal quantum dots. Nature Mater 7, 659–664 (2008). https://doi.org/10.1038/nmat2222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2222

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing