Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Determining the aluminium occupancy on the active T-sites in zeolites using X-ray standing waves

Abstract

Zeolites are microporous crystalline materials that find wide application in industry, for example, as catalysts and gas separators, and in our daily life, for example, as adsorbents or as ion exchangers in laundry detergents1. The tetrahedrally coordinated silicon and aluminium atoms in the zeolite unit cell occupy the so-called crystallographic T-sites. Besides their pore size, the occupation of specific T-sites by the aluminium atoms determines the performance of the zeolites2. Despite its importance, the distribution of aluminium over the crystallographic T-sites remains one of the most challenging, unresolved issues in zeolite science. Here, we report how to determine unambiguously and directly the distribution of aluminium in zeolites by means of the X-ray standing wave technique3 using brilliant, focused X-rays from a third-generation synchrotron source. We report in detail the analysis of the aluminium distribution in scolecite, which demonstrates how the aluminium occupancy in zeolites can systematically be determined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of scolecite.
Figure 2: Experimental details.
Figure 3: Experimental results on scolecite.

Similar content being viewed by others

References

  1. Maxwell, I. E. & Stork, W. H. J. Hydrocarbon processing with zeolites. Stud. Surf. Sci. Catal. 137, 747–819 (2001).

    Article  CAS  Google Scholar 

  2. Baerlocher, C., Meier, W. M. & Olson, D. H. Atlas of Zeolite Framework Types 5th revised edn (Elsevier, Amsterdam, 2001) <http://topaz.ethz.ch/IZA-SC/StdAtlas.htm>.

    Google Scholar 

  3. Cheng, L., Fenter, P., Bedzyk, M. J. & Sturchio, N. C. Fourier-expansion solution of atom distributions in a crystal using x-ray standing waves. Phys. Rev. Lett. 90, 255503 (2003).

    Article  CAS  Google Scholar 

  4. Armbruster, T. Clinoptilolite-heulandite: Applications and basic research. Stud. Surf. Sci. Catal. 135, 13–27 (2001).

    Article  Google Scholar 

  5. Dedecek, J., Kaucky, D., Wichterlova, B. & Gonsiorova, O. Co2+ ions as probes of Al distribution in the framework of zeolites. ZSM-5 study. Phys. Chem. Chem. Phys. 4, 5406–5413 (2002).

    Article  CAS  Google Scholar 

  6. van Bokhoven, J. A., Koningsberger, D. C., Kunkeler, P., van Bekkum, H. & Kentgens, A. P. M. Stepwise dealumination of zeolite beta at specific T-sites observed with 27Al MAS and 27Al MQ MAS NMR. J. Am. Chem. Soc. 112, 12842–12847 (2000).

    Article  Google Scholar 

  7. Sklenak, S. et al. Aluminum siting in silicon-rich zeolite frameworks: A combined high-resolution 27Al NMR spectroscopy and quantum mechanics/molecular mechanics study of ZSM-5. Angew. Chem. Int. Ed. 46, 7286–7289 (2007).

    Article  CAS  Google Scholar 

  8. Kokotailo, G. T., Lawton, S. L., Olson, D. H. & Meier, W. M. Structure of synthetic zeolite ZSM-5. Nature 272, 437–438 (1978).

    Article  CAS  Google Scholar 

  9. Treacy, M. M. J. & Newsam, J. M. Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature 332, 249–251 (1988).

    Article  CAS  Google Scholar 

  10. Fyfe, C. A., Gobbi, G. C., Klinowski, J., Thomas, J. M. & Ramdas, S. Resolving crystallographically distinct tetrahedral sites in silicalite and ZSM-5 by solid-state NMR. Nature 296, 530–533 (1982).

    Article  CAS  Google Scholar 

  11. Henry, P. F., Weller, M. T. & Wilson, C. C. Structural investigation of TS-1: Determination of the true nonrandom titanium framework substitution and silicon vacancy distribution from powder neutron diffraction studies using isotopes. J. Phys. Chem. B. 105, 7452–7458 (2001).

    Article  CAS  Google Scholar 

  12. Hijar, C. A. et al. The siting of Ti in TS-1 is non-random. Powder neutron diffraction studies and theoretical calculations of TS-1 and FeS-1. J. Phys. Chem. B 104, 12157–12164 (2000).

    Article  CAS  Google Scholar 

  13. Lamberti, C. et al. Ti location in the MFI framework of Ti-silicalite-1: A neutron powder diffraction study. J. Am. Chem. Soc. 123, 2204–2212 (2001).

    Article  CAS  Google Scholar 

  14. Marra, G. L., Artioli, G., Fitch, A. N., Milanesio, M. & Lamberti, C. Orthorhombic to monoclinic phase transition in high-Ti-loaded TS-1: An attempt to locate Ti in the MFI framework by low temperature XRD. Microporous Mesoporous Mater. 40, 85 (2000).

    Article  CAS  Google Scholar 

  15. Milanesio, M. et al. Iron location in Fe-silicalites by synchrotron radiation single crystal x-ray diffraction. J. Phys. Chem. B 104, 9951–9953 (2000).

    Article  CAS  Google Scholar 

  16. Palin, L., C. et al. Single-crystal synchrotron radiation x-ray diffraction study of B and Ga silicalites compared to a purely siliceous MFI: A discussion of the heteroatom distribution. J. Phys. Chem. B 107, 4034–4042 (2003).

    Article  CAS  Google Scholar 

  17. Smith, J. V., Pluth, J. J., Artioli, G. & Ross, F. K. in Proc. 6th Int. Zeolite Conf. (eds Olson, D. & Bisio, A.) 842–850 (Buttersworth, London, 1984).

    Google Scholar 

  18. Hertel, N., Materlik, G. & Zegenhagen, J. X-ray standing wave analysis of bismuth implanted in Si(110). Z. Phys. B 58, 199–204 (1985).

    Article  CAS  Google Scholar 

  19. Zegenhagen, J. Surface-structure determination with x-ray standing waves. Surf. Sci. Rep. 18, 199–271 (1993).

    Article  Google Scholar 

  20. Lee, T. -L. et al. The use of x-ray standing waves and evanescent-wave emission to study buried strained-layer heterostructures. Physica B 221, 437–444 (1996).

    Article  CAS  Google Scholar 

  21. Batterman, B. W. Effect of dynamical diffraction in x-ray fluorescence scattering. Phys. Rev. 133, A759 (1964).

    Article  Google Scholar 

  22. Zegenhagen, J., Materlik, G. & Uelhoff, W. X-ray standing wave analysis of highly perfect Cu crystals and electrodeposited submonolayers of Cd and Tl on Cu surfaces. J. X-ray Sci. Tech. 2, 214–239 (1990).

    Article  CAS  Google Scholar 

  23. van Koningsveld, H., van Bekkum, H. & Jansen, J. C. On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy. Acta Crystallogr., B 43, 127–132 (1987).

    Article  Google Scholar 

  24. Drakopoulos, M. et al. X-ray standing wave microscopy: Chemical microanalysis with atomic resolution. Appl. Phys. Lett. 81, 2279–2281 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the staff of the ESRF and the ID32 beamline, in particular L. Andre and H. Isern, for skillful technical assistance. Financial support by a grant (05 KS4GU3/4) to S.T. from the German Federal Ministry for Education and Research (BMBF) is gratefully acknowledged. Financial support from the Swiss National Science Foundation (PP002–110473) to J.A.v.B. is also gratefully acknowledged. We thank L. McCusker for careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeroen A. van Bokhoven or Tien-Lin Lee.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Bokhoven, J., Lee, TL., Drakopoulos, M. et al. Determining the aluminium occupancy on the active T-sites in zeolites using X-ray standing waves. Nature Mater 7, 551–555 (2008). https://doi.org/10.1038/nmat2220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2220

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing