Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct observation of a local structural mechanism for dynamic arrest


The mechanism by which a liquid may become arrested, forming a glass or gel, is a long-standing problem of materials science. In particular, long-lived (energetically) locally favoured structures (LFSs), the geometry of which may prevent the system relaxing to its equilibrium state, have long been thought to play a key role in dynamical arrest. Here, we propose a definition of LFSs which we identify with a novel topological method and directly measure with experiments on a colloidal liquid–gel transition. The population of LFSs is a strong function of (effective) temperature in the ergodic liquid phase, rising sharply approaching dynamical arrest, and indeed forms a percolating network that becomes the ‘arms’ of the gel. Owing to the LFSs, the gel is unable to reach equilibrium, crystal–gas coexistence. Our results provide direct experimental observation of a link between local structure and dynamical arrest, and open a new perspective on a wide range of metastable materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structural and dynamic characterization of the colloidal liquid–gel transition.
Figure 2: Coordinates identified as belonging to different LFSs.
Figure 3: Proportion of particles in LFSs as a function of polymer concentration.
Figure 4: Static and dynamic characteristics of gelation.


  1. Trappe, V., Prasad, V., Cipelletti, P., L., Segre, N. & Weitz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001).

    Article  CAS  Google Scholar 

  2. Sciortino, F. & Tartaglia, P. Glassy colloidal systems. Adv. Phys. 54, 471–524 (2005).

    Article  CAS  Google Scholar 

  3. Poon, W. C. K. The physics of a model colloid-polymer mixture. J. Phys. Condens. Matter. 14, R859–R880 (2002).

    Article  CAS  Google Scholar 

  4. Manley, S. et al. Glasslike arrest in spinodal decomposition as a route to colloidal gelation. Phys. Rev. Lett. 95, 238302 (2005).

    Article  CAS  Google Scholar 

  5. Zaccarelli, E. Colloidal gels: Equilibrium and non-equilibrium routes. J. Phys. Condens. Matter 19, 323101 (2007).

    Article  Google Scholar 

  6. Frank, F. C. Supercooling of liquids. Proc. R. Soc. Lond. A 215, 43–46 (1952).

    Article  CAS  Google Scholar 

  7. Tanaka, H. Two-order-parameter description of liquids. 1. A general model of glass transition covering its strong to fragile limit. J. Chem. Phys. 111, 3163–3174 (1999).

    Article  CAS  Google Scholar 

  8. Ediger, M. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).

    Article  CAS  Google Scholar 

  9. Widmer-Cooper, A. & Harrowell, P. On the relationship between structure and dynamics in a supercooled liquid. J. Phys. Condens. Matter 17, S4025–S4034 (2005).

    Article  CAS  Google Scholar 

  10. Widmer-Cooper, A. & Harrowell, P. Free volume cannot explain the spatial heterogeneity of Debye–Waller factors in a glass-forming binary alloy. J. Non-Cryst. Solids 352, 5098–5102 (2006).

    Article  CAS  Google Scholar 

  11. Tanaka, H. Viscoelastic phase separation. J. Phys. Condens. Matter 12, R207–R264 (2000).

    Article  CAS  Google Scholar 

  12. Wales, D. J. Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge Univ. Press, Cambridge, 2004).

    Book  Google Scholar 

  13. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  Google Scholar 

  14. Mossa, S. & Tarjus, G. Locally preferred structure in simple atomic liquids. J. Chem. Phys. 119, 8069–8074 (2003).

    Article  CAS  Google Scholar 

  15. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and gases. Phys. Rev. B 28, 784–805 (1983).

    Article  CAS  Google Scholar 

  16. Jonsson, H. & Andersen, H. Icosahedral ordering in the Lennard-Jones liquid and glass. Phys. Rev. Lett. 60, 2295–2298 (1988).

    Article  CAS  Google Scholar 

  17. Reichert, H. et al. Observation of five-fold local symmetry in liquid lead. Nature 408, 839–841 (2000).

    Article  CAS  Google Scholar 

  18. Di Cicco, A., Trapananti, A., Faggioni, S. & Filipponi, A. Is there icosahedral ordering in liquid and undercooled metals? Phys. Rev. Lett. 91, 135505 (2003).

    Article  Google Scholar 

  19. Schenk, T., Holland-Moritz, D., Simonet, V., Bellissent, R. & Herlach, D. M. Icosahedral short-range order in deeply undercooled metallic melts. Phys. Rev. Lett. 89, 075507 (2002).

    Article  CAS  Google Scholar 

  20. Pusey, P. N. in Liquids, Freezing and the Glass Transition (eds Hansen, J. P., Levesque, D. & Zinn-Justin, J.) (North-Holland, Amsterdam, 1991).

    Google Scholar 

  21. van Blaaderen, A. & Wiltzius, P. Real-space structure of colloidal hard-sphere glasses. Science 270, 1177–1179 (1995).

    Article  CAS  Google Scholar 

  22. Campbell, A. I., Anderson, V. J., van Duijneveldt, J. S. & Bartlett, P. Dynamical arrest in attractive colloids: The effect of long-range repulsion. Phys. Rev. Lett. 94, 208301 (2005).

    Article  Google Scholar 

  23. Gasser, U., Schofield, A. & Weitz, D. Local order in a supercooled colloidal fluid observed by confocal microscopy. J. Phys. Condens. Matter 15, S375–S380 (2003).

    Article  CAS  Google Scholar 

  24. Doye, J. P. K., Wales, D. J. & Berry, R. S. The effect of the range of the potential on the structures of clusters. J. Chem. Phys. 103, 4234–4249 (1995).

    Article  CAS  Google Scholar 

  25. Asakura, S. & Oosawa, F. On interaction between 2 bodies immersed in a solution of macromolecules. J. Chem. Phys. 22, 1255–1256 (1954).

    Article  CAS  Google Scholar 

  26. Royall, C. P., Louis, A. & Tanaka, H. Measuring colloidal interactions with confocal microscopy. J. Chem. Phys. 127, 044507 (2007).

    Article  Google Scholar 

  27. Pham, K. N. et al. Multiple glassy states in a simple model system. Science 296, 104–106 (2002).

    Article  CAS  Google Scholar 

  28. Williams, S. R. Topological classification of clusters in condensed phases. Preprint at <> (2007).

  29. Charbonneau, P. & Reichman, D. Systematic characteristation of thermodynamic and dynamical phase behaviour in systems with short-ranged attraction. Phys. Rev. E 75, 011507 (2007).

    Article  CAS  Google Scholar 

  30. Manoharan, V. N., Elesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003).

    Article  CAS  Google Scholar 

  31. Puertas, A. M., Fuchs, M. & Cates, M. E. Dynamical heterogeneities close to a colloidal gel. J. Chem. Phys. 121, 2813–2822 (2004).

    Article  CAS  Google Scholar 

  32. Weeks, E., Crocker, J., Levitt, A., Schofield, A. & Weitz, D. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–631 (2001).

    Article  Google Scholar 

  33. Kroy, K., Cates, M. & Poon, W. Cluster mode-coupling approach to weak gelation in attractive colloids. Phys. Rev. Lett. 92, 148302 (2004).

    Article  CAS  Google Scholar 

Download references


The authors are grateful to A. van Blaaderen and D. Derks for particle synthesis help and gifts. We wish to thank P. Bartlett, D. Derks, D. Head and R. Jack for critical reading of the manuscript, and T. Ichikawa for kind instrumentation support. This work was partially supported by a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan. C.P.R. is grateful to the Royal Society for financial support.

Author information

Authors and Affiliations



C.P.R., S.R.W. and H.T. conceived the project and wrote the manuscript, C.P.R. carried out the experiments, simulation and analysis, S.R.W. wrote the TCC code and T.O. wrote the W6 analysis code.

Corresponding authors

Correspondence to C. Patrick Royall or Hajime Tanaka.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Patrick Royall, C., Williams, S., Ohtsuka, T. et al. Direct observation of a local structural mechanism for dynamic arrest. Nature Mater 7, 556–561 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing