Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Charge-order fluctuations in one-dimensional silicides

Abstract

Metallic nanowires are of great interest as interconnects in nanoelectronic devices1. They also represent important systems for understanding the complexity of electronic interactions and conductivity in one dimension2. We have fabricated exceptionally long and uniform YSi2 nanowires through self-assembly of yttrium atoms on Si(001). The wire widths are quantized in odd multiples of the Si substrate lattice constant. The thinnest wires represent one of the closest realizations of the isolated Peierls chain3, exhibiting van Hove type singularities in the one-dimensional density of states and charge-order fluctuations below 150 K. The structure of the wire was determined through a detailed comparison of scanning tunnelling microscopy data and first-principles calculations. Quantized width variations along the thinnest wires produce built-in Schottky junctions, the electronic properties of which are governed by the finite size and temperature scaling of the charge-ordering correlation. This illustrates how a collective phenomenon such as charge ordering might be exploited in nanoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: STM topography of YSi2 nanowires.
Figure 2: Structure and electronic structure from STS and DFT.
Figure 3: Charge ordering in YSi2 nanowires.
Figure 4: Charge ordering in finite wire segments and wire junctions.

Similar content being viewed by others

References

  1. Barth, J. V., Costantini, G. & Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 437, 671–679 (2005).

    Article  CAS  Google Scholar 

  2. Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, New York, 2004).

    Google Scholar 

  3. Peierls, R. E. Quantum Theory of Solids (Oxford Univ. Press, Oxford, 1955).

    Google Scholar 

  4. Grüner, G. Density Waves in Solids 1 edn (Addison–Wesley, Reading, MA, 1994).

    Google Scholar 

  5. Berlinsky, A. J. One-dimensional metals and charge density wave effects in these materials. Rep. Prog. Phys. 42, 1243–1283 (1979).

    Article  CAS  Google Scholar 

  6. Charlier, J. C., Blase, X. & Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 79, 677–732 (2007).

    Article  CAS  Google Scholar 

  7. Connétable, D., Rignanese, G.-M., Charlier, J.-C. & Blase, X. Room temperature Peierls distortion in small diameter nanotubes. Phys. Rev. Lett. 94, 015503 (2005).

    Article  Google Scholar 

  8. Barnett, R., Demler, E. & Kaxiras, E. Electron–phonon interaction in ultrasmall-radius carbon nanotubes. Phys. Rev. B 71, 035429 (2005).

    Article  Google Scholar 

  9. Piscanec, S., Lazzeri, M., Robertson, J., Ferrari, A. C. & Mauri, F. Optical phonons in carbon nanotubes: Kohn anomalies, Peierls distortions, and dynamic effects. Phys. Rev. B 75, 035427 (2007).

    Article  Google Scholar 

  10. Farhat, H. et al. Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly. Phys. Rev. Lett. 99, 145506 (2007).

    Article  CAS  Google Scholar 

  11. Liu, B. Z. & Nogami, J. An STM study of the Si(001)(2×7)-Gd, Dy surface. Surf. Sci. 540, 136–144 (2003).

    Article  CAS  Google Scholar 

  12. Preinesberger, C., Vandré, S., Kalka, T. & Dähne-Prietsch, M. Formation of dysprosium silicide wires on Si(001). J. Phys. D: Appl. Phys. 31, L43–L45 (1998).

    Article  CAS  Google Scholar 

  13. Chen, Y., Ohlberg, D. A. A., Medeiros-Ribeiro, G., Chang, Y. A. & Williams, R. S. Self-assembled growth of epitaxial erbium disilicide nanowires on silicon (001). Appl. Phys. Lett. 76, 4004–4006 (2000).

    Article  CAS  Google Scholar 

  14. Chen, Y., Ohlberg, D. A. A. & Williams, R. S. Nanowires of four epitaxial hexagonal silicides grown on Si(001). J. Appl. Phys. 91, 3213–3218 (2002).

    Article  CAS  Google Scholar 

  15. Preinesberger, C., Becker, S. K., Vandré, S., Kalka, T. & Dähne, M. Structure of DySi2 nanowires on Si(001). J. Appl. Phys. 91, 1695–1697 (2002).

    Article  CAS  Google Scholar 

  16. Liu, B. Z. & Nogami, J. A scanning tunneling microscopy study of dysprosium silicide nanowire growth on Si(001). J. Appl. Phys. 93, 593–599 (2003).

    Article  CAS  Google Scholar 

  17. Pradhan, A., Ma, N.-Y. & Liu, F. Theory of equilibrium shape of an anisotropically strained island: Thermodynamic limits for growth of nanowires. Phys. Rev. B 70, 193405 (2004).

    Article  Google Scholar 

  18. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  19. Kresse, G. & Joubert, J. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  20. Wildöer, J. W. G., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59–62 (1998).

    Article  Google Scholar 

  21. Kim, P., Odom, T. W., Huang, J. & Lieber, C. M. Electronic density of states of atomically resolved single-walled carbon nanotubes: Van Hove singularities and end states. Phys. Rev. Lett. 82, 1225–1228 (1999).

    Article  CAS  Google Scholar 

  22. Venkataraman, L. & Lieber, C. M. Molybdenum selenide molecular wires as one-dimensional conductors. Phys. Rev. Lett. 83, 5334–5337 (1999).

    Article  CAS  Google Scholar 

  23. Carpinelli, J. M., Weitering, H. H., Plummer, E. W. & Stumpf, R. Direct observation of a surface charge density wave. Nature 381, 398–400 (1996).

    Article  CAS  Google Scholar 

  24. Urban, D. F., Stafford, C. A. & Grabert, H. Scaling theory of the Peierls charge density wave in metal nanowires. Phys. Rev. B 75, 205428 (2007).

    Article  Google Scholar 

  25. Aruga, T. Surface Peierls transition on Cu(001) covered with heavier p-block metals. Surf. Sci. Rep. 61, 283–302 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z.Y. Zhang and G.M. Stocks for stimulating discussions. The experimental research was sponsored by NIH Grant No. R01HG002647, NSF Grant No. DMR0606485 and by the Center for Nanophase Materials Sciences at Oak Ridge National Laboratory, which is sponsored by the Division of Scientific User Facilities, US Department of Energy. The computational research involved resources from the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US Department of Energy under Contract No. DE-AC02-05CH11231, and from the National Center for Computational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the US Department of Energy under Contract DE-AC05-00OR22725.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanno H. Weitering.

Supplementary information

Supplementary Information

Discussion and Figure S1–S2 (PDF 171 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, C., Kent, P., Kim, TH. et al. Charge-order fluctuations in one-dimensional silicides. Nature Mater 7, 539–542 (2008). https://doi.org/10.1038/nmat2209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing