Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of interparticle and external forces in nanoparticle assembly

Abstract

The past 20 years have witnessed simultaneous multidisciplinary explosions in experimental techniques for synthesizing new materials, measuring and manipulating nanoscale structures, understanding biological processes at the nanoscale, and carrying out large-scale computations of many-atom and complex macromolecular systems. These advances have led to the new disciplines of nanoscience and nanoengineering. For reasons that are discussed here, most nanoparticles do not 'self-assemble' into their thermodynamically lowest energy state, and require an input of energy or external forces to 'direct' them into particular structures or assemblies. We discuss why and how a combination of self- and directed-assembly processes, involving interparticle and externally applied forces, can be applied to produce desired nanostructured materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Different types of nanoparticles.
Figure 2: Illustration of how certain bulk properties of nanostructured materials can peak at a particular radius of their constituent nanoparticles.
Figure 3: Effects of size on phase states of nanoparticles and small colloidal particles.
Figure 4: Nanoparticle orderings due to internal and external magnetic and electrostatic forces.
Figure 5: Typical normal (F) and lateral (F||) friction forces between surfaces confining nanoparticles or between nanostructured (rough, patterned) surfaces.
Figure 7: Effects of nanoparticle shape, size, concentration and water penetration on the forces across confined nanoparticle assemblies and films.
Figure 6: Different types of nanoparticle assemblies and nanostructured materials.
Figure 8: Different types of biological nanoparticles, and nanostructured surfaces and materials.

References

  1. Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996).

    CAS  Google Scholar 

  2. Hodes, G. When small is different: Some recent advances in concepts and applications of nanoscale phenomena. Adv. Mater. 19, 639–655 (2007).

    CAS  Google Scholar 

  3. Klabunde, K. J. S. (ed.) Nanoscale Materials in Chemistry (Wiley Interscience, New York, 2001).

    Google Scholar 

  4. Antonets, I. V., Kotov, L. N., Nekipelov, S. V. & Karpushov, E. N. Conducting and reflecting properties of thin metal films. Tech. Phys. 49, 1496–1500 (2004).

    CAS  Google Scholar 

  5. Lenham, A. P. & Treherne, D. M. Applicability of anomalous skin-effect theory to optical constants of Cu, Ag, and Au in the Infrared. J. Opt. Soc. Am. 56, 683–685 (1966).

    CAS  Google Scholar 

  6. Srivastava, D., Menon, M. & Cho, K. Anisotropic nanomechanics of boron nitride nanotubes: Nanostructured “skin” effect. Phys. Rev. B 6319, 195413 (2001).

    Google Scholar 

  7. Ercolessi, F., Andreoni, W. & Tosatti, E. Melting of small gold particles: Mechanism and size effects. Phys. Rev. Lett. 66, 911–914 (1991).

    CAS  Google Scholar 

  8. Hagen, M. H. J., Meijer, E. J., Mooij, G., Frenkel, D. & Lekkerkerker, H. N. W. Does C60 have a liquid-phase. Nature 365, 425–426 (1993).

    CAS  Google Scholar 

  9. Rey, C. & Gallego, L. J. Structures of hard-core Yukawa clusters and the tail-range dependence of the existence of a liquidlike cluster phase: Relevance to the physics of C-60. Phys. Rev. E 53, 2480–2487 (1996).

    CAS  Google Scholar 

  10. Israelachvili, J. Self-assembly in 2 dimensions — surface micelles and domain formation in monolayers. Langmuir 10, 3774–3781 (1994).

    CAS  Google Scholar 

  11. Israelachvili, J. N. Intermolecular and Surface Forces 2nd edn (Academic Press, Burlington, 1991).

    Google Scholar 

  12. Alcantar, N. A., Park, C., Pan, J. M. & Israelachvili, J. N. Adhesion and coalescence of ductile metal surfaces and nanoparticles. Acta Mater. 51, 31–47 (2003).

    CAS  Google Scholar 

  13. Rosensweig, R. E. Ferrohydrodynamics (Cambrige Univ. Press, New York, 1985).

    Google Scholar 

  14. Cho, K. S., Talapin, D. V., Gaschler, W. & Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 127, 7140–7147 (2005).

    CAS  Google Scholar 

  15. Patla, I. et al. Synthesis, two-dimensional assembly, and surface pressure-induced coalescence of ultranarrow PbS nanowires. Nano Lett. 7, 1459–1462 (2007).

    CAS  Google Scholar 

  16. Kim, H. et al. Parallel patterning of nanoparticles via electrodynamic focusing of charged aerosols. Nature Nanotech. 1, 117–121 (2006).

    CAS  Google Scholar 

  17. Ryan, K. M., Mastroianni, A., Stancil, K. A., Liu, H. T. & Alivisatos, A. P. Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. Nano Lett. 6, 1479–1482 (2006).

    CAS  Google Scholar 

  18. Joselevich, E. & Lieber, C. M. Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett. 2, 1137–1141 (2002).

    CAS  Google Scholar 

  19. Sukhorukov, G. B., Antipov, A. A., Voigt, A., Donath, E. & Möhwald, H. pH-controlled macromolecule encapsulation in and release from polyelectrolyte multilayer nanocapsules. Macromol. Rapid Comm. 22, 44–46 (2001).

    CAS  Google Scholar 

  20. Kolny, J., Kornowski, A. & Weller, H. Self-organization of cadmium sulfide and gold nanoparticles by electrostatic interaction. Nano Lett. 2, 361–364 (2002).

    CAS  Google Scholar 

  21. Simard, J., Briggs, C., Boal, A. K. & Rotello, V. M. Formation and pH-controlled assembly of amphiphilic gold nanoparticles. Chem. Comm. 1943–1944 (2000).

  22. Zhang, H., Zhou, Z., Yang, B. & Gao, M. Y. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J. Phys. Chem. B 107, 8–13 (2003).

    CAS  Google Scholar 

  23. Tripp, S. L., Pusztay, S. V., Ribbe, A. E. & Wei, A. Self-assembly of cobalt nanoparticle rings. J. Am. Chem. Soc. 124, 7914–7915 (2002).

    CAS  Google Scholar 

  24. Terheiden, A., Dmitrieva, O., Acet, M. & Mayer, C. Magnetic field induced self-assembly of gas phase prepared FePt nanoparticles. Chem. Phys. Lett. 431, 113–117 (2006).

    CAS  Google Scholar 

  25. Morkved, T. L. et al. Local control of microdomain orientation in diblock copolymer thin films with electric fields. Science 273, 931–933 (1996).

    CAS  Google Scholar 

  26. Velev, O. D. & Bhatt, K. H. On-chip micromanipulation and assembly of colloidal particles by electric fields. Soft Matter 2, 738–750 (2006).

    CAS  Google Scholar 

  27. Benz, M., Rosenberg, K. J., Kramer, E. J. & Israelachvili, J. N. The deformation and adhesion of randomly rough and patterned surfaces. J. Phys. Chem. B 110, 11884–11893 (2006).

    CAS  Google Scholar 

  28. Huang, Y., Duan, X. F., Wei, Q. Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    CAS  Google Scholar 

  29. Hyun, S., Pei, L., Molinari, J. F. & Robbins, M. O. Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117 (2004).

    CAS  Google Scholar 

  30. Israelachvili, J. & Gourdon, D. Putting liquids under molecular-scale confinement. Science 292, 867–868 (2001).

    CAS  Google Scholar 

  31. Gerstenberg, M. C., Pedersen, J. S. & Smith, G. S. Surface induced ordering of micelles at the solid-liquid interface. Phys. Rev. E 58, 8028–8031 (1998).

    CAS  Google Scholar 

  32. Kocevar, K. & Musevic, I. Structural forces near phase transitions of liquid crystals. Chem. Phys. Chem. 4, 1049–1056 (2003).

    CAS  Google Scholar 

  33. Akbulut, M. et al. Forces between surfaces across nanoparticle solutions: Role of size, shape, and concentration. Langmuir 23, 3961–3969 (2007).

    CAS  Google Scholar 

  34. Min, Y. et al. Normal and shear forces generated during the ordering (directed assembly) of confined straight and curved nanowires. Nano Lett. 8, 246–252 (2008).

    CAS  Google Scholar 

  35. Lazarov, G. S., Denkov, N. D., Velev, O. D., Kralchevsky, P. A. & Nagayama, K. Formation of 2-dimensional structures from colloidal particles on fluorinated oil substrate. J. Chem. Soc.-Faraday Trans. 90, 2077–2083 (1994).

    CAS  Google Scholar 

  36. Nikoobakht, B., Wang, Z. L. & El-Sayed, M. A. Self-assembly of gold nanorods. J. Phys. Chem. B 104, 8635–8640 (2000).

    CAS  Google Scholar 

  37. Ahmed, S. & Ryan, K. M. Self-assembly of vertically aligned nanorod supercrystals using highly oriented pyrolytic graphite. Nano Lett. 7, 2480–2485 (2007).

    CAS  Google Scholar 

  38. Alig, A. R. G., Akbulut, M., Golan, Y. & Israelachvili, J. Forces between surfactant-coated ZnS nanoparticles in dodecane: Effect of water. Adv. Funct. Mater. 16, 2127–2134 (2006).

    CAS  Google Scholar 

  39. Prevo, B. G., Kuncicky, D. M. & Velev, O. D. Engineered deposition of coatings from nano- and micro-particles: A brief review of convective assembly at high volume fraction. Colloids Surf. A 311, 2–10 (2007).

    CAS  Google Scholar 

  40. Carpick, R. W., Agrait, N., Ogletree, D. F. & Salmeron, M. Variation of the interfacial shear strength and adhesion of a nanometer-sized contact. Langmuir 12, 3334–3340 (1996).

    CAS  Google Scholar 

  41. Ruths, M. Friction of mixed and single-component aromatic monolayers in contacts of different adhesive strength. J. Phys. Chem. B 110, 2209–2218 (2006).

    CAS  Google Scholar 

  42. Landman, U., Luedtke, W. D., Burnham, N. A. & Colton, R. J. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248, 454–461 (1990).

    CAS  Google Scholar 

  43. Golan, Y. et al. Microtribology and direct force measurement of WS2 nested fullerene-like nanostructures. Adv. Mater. 11, 934–937 (1999).

    CAS  Google Scholar 

  44. Akbulut, M., Belman, N., Golan, Y. & Israelachvili, J. Frictional properties of confined nanorods. Adv. Mater. 18, 2589–2592 (2006).

    CAS  Google Scholar 

  45. Narayanan, R. & El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 109, 12663–12676 (2005).

    CAS  Google Scholar 

  46. Schwuger, M. J., Stickdorn, K. & Schomacker, R. Microemulsions in technical processes. Chem. Rev. 95, 849–864 (1995).

    CAS  Google Scholar 

  47. Smith, R. D., Fulton, J. L., Blitz, J. P. & Tingey, J. M. Reverse micelles and microemulsions in near-critical and supercritical fluids. J. Phys. Chem. 94, 781–787 (1990).

    CAS  Google Scholar 

  48. Kroto, H. W., Heath, J. R., Obrien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985).

    CAS  Google Scholar 

  49. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    CAS  Google Scholar 

  50. Tenne, R., Margulis, L., Genut, M. & Hodes, G. Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444–446 (1992).

    CAS  Google Scholar 

  51. Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nature Nanotech. 1, 103–111 (2006).

    CAS  Google Scholar 

  52. Murphy, C. J. et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005).

    CAS  Google Scholar 

  53. Cozzoli, P. D., Kornowski, A. & Weller, H. Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J. Am. Chem. Soc. 125, 14539–14548 (2003).

    CAS  Google Scholar 

  54. Kim, Y. H., Jun, Y. W., Jun, B. H., Lee, S. M. & Cheon, J. W. Sterically induced shape and crystalline phase control of GaP nanocrystals. J. Am. Chem. Soc. 124, 13656–13657 2002).

    CAS  Google Scholar 

  55. Guzelian, A. A. et al. Synthesis of size-selected, surface-passivated InP nanocrystals. J. Phys. Chem. 100, 7212–7219 (1996).

    CAS  Google Scholar 

  56. Steiner, D. et al. Zero-dimensional and quasi one-dimensional effects in semiconductor nanorods. Nano Lett. 4, 1073–1077 (2004).

    CAS  Google Scholar 

  57. Peng, X. G. et al. Shape control of CdSe nanocrystals. Nature 404, 59–61 (2000).

    CAS  Google Scholar 

  58. Halpert, J. E., Porter, V. J., Zimmer, J. P. & Bawendi, M. G. Synthesis of CdSe/CdTe nanobarbells. J. Am. Chem. Soc. 128, 12590–12591 (2006).

    CAS  Google Scholar 

  59. Yu, W. W., Wang, Y. A. & Peng, X. G. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem. Mater. 15, 4300–4308 (2003).

    CAS  Google Scholar 

  60. Acharya, S., Panda, A. B., Belman, N., Efrima, S. & Golan, Y. A semiconductor-nanowire assembly of ultrahigh junction density by the Langmuir-Blodgett technique. Adv. Mater. 18, 210–213 (2006).

    CAS  Google Scholar 

  61. Markovich, G. et al. Architectonic quantum dot solids. Acc. Chem. Res. 32, 415–423 (1999).

    CAS  Google Scholar 

  62. Yang, P. D. Wires on water. Nature 425, 243–244 (2003).

    CAS  Google Scholar 

  63. Pradhan, N. & Efrima, S. Single-precursor, one-pot versatile synthesis under near ambient conditions of tunable, single and dual band fluorescing metal sulfide nanoparticles. J. Am. Chem. Soc. 125, 2050–2051 (2003).

    CAS  Google Scholar 

  64. Panda, A. B., Acharya, S., Efrima, S. & Golan, Y. Synthesis, assembly, and optical properties of shape- and phase-controlled ZnSe nanostructures. Langmuir 23, 765–770 (2007).

    CAS  Google Scholar 

  65. Acharya, S., Panda, A. B., Efrima, S. & Golan, Y. Polarization properties and switchable assembly of ultranarrow ZnSe nanorods. Adv. Mater. 19, 1105–1108 (2007).

    CAS  Google Scholar 

  66. Acharya, S., Patla, I., Kost, J., Efrima, S. & Golan, Y. Switchable assembly of ultra narrow CdS nanowires and nanorods. J. Am. Chem. Soc. 128, 9294–9295 (2006).

    CAS  Google Scholar 

  67. Pradhan, N. & Efrima, S. Supercrystals of uniform nanorods and nanowires, and the nanorod-to-nanowire oriented transition. J. Phys. Chem. B 108, 11964–11970 (2004).

    CAS  Google Scholar 

  68. Acharya, S. & Efrima, S. Two-dimensional pressure-driven nanorod-to-nanowire reactions in Langmuir monolayers at room temperature. J. Am. Chem. Soc. 127, 3486–3490 (2005).

    CAS  Google Scholar 

  69. Tang, Z. Y., Kotov, N. A. & Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 297, 237–240 (2002).

    CAS  Google Scholar 

  70. Zhang, Z. L., Tang, Z. Y., Kotov, N. A. & Glotzer, S. C. Simulations and analysis of self-assembly of CdTe nanoparticles into wires and sheets. Nano Lett. 7, 1670–1675 (2007).

    CAS  Google Scholar 

  71. Tang, Z. Y., Zhang, Z. L., Wang, Y., Glotzer, S. C. & Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    CAS  Google Scholar 

  72. Xia, Y. N., Gates, B. & Park, S. H. Fabrication of three-dimensional photonic crystals for use in the spectral region from ultraviolet to near-infrared. J. Lightwave Technol. 17, 1956–1962 (1999).

    CAS  Google Scholar 

  73. Kumacheva, E., Garstecki, P., Wu, H. K. & Whitesides, G. M. Two-dimensional colloid crystals obtained by coupling of flow and confinement. Phys. Rev. Lett. 91, 128301 (2003).

    Google Scholar 

  74. Subramanian, G., Manoharan, V. N., Thorne, J. D. & Pine, D. J. Ordered macroporous materials by colloidal assembly: A possible route to photonic bandgap materials. Adv. Mater. 11, 1261–1265 (1999).

    CAS  Google Scholar 

  75. Jana, N. R. Shape effect in nanoparticle self-assembly. Angew. Chem. Int. Ed. 43, 1536–1540 (2004).

    CAS  Google Scholar 

  76. Velamakanni, B. V., Chang, J. C., Lange, F. F. & Pearson, D. S. New method for efficient colloidal particle packing via modulation of repulsive lubricating hydration forces. Langmuir 6, 1323–1325 (1990).

    CAS  Google Scholar 

  77. Lange, F. F. Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72, 3–15 (1989).

    CAS  Google Scholar 

  78. Bhushan, B. Nanotribology and Nanomechanics: An Introduction (Springer, Berlin, 2005).

    Google Scholar 

  79. Xu, L. B. et al. Synthesis and magnetic behavior of periodic nickel sphere arrays. Adv. Mater. 15, 1562–1564 (2003).

    CAS  Google Scholar 

  80. Cheng, J. Y., Mayes, A. M. & Ross, C. A. Nanostructure engineering by templated self-assembly of block copolymers. Nature Mater. 3, 823–828 (2004).

    CAS  Google Scholar 

  81. Gourdon, D. et al. Mechanical and structural properties of BaCrO4 nanorod films under confinement and shear. Adv. Funct. Mater. 14, 238–242 (2004).

    CAS  Google Scholar 

  82. Fraenkelconrat, H. & Singer, B. Reconstitution of tobacco mosaic virus. 3. Improved methods and the use of mixed nucleic acids. Biochim. Biophys Acta 33, 359–370 (1959).

    CAS  Google Scholar 

  83. Butler, P. J. G. The current picture of the structure and assembly of tobacco mosaic virus. J. Gen. Virol. 65, 253–279 (1984).

    CAS  Google Scholar 

  84. Wijaya, A. & Flamad-Schifferli, K. High-density encapsulation of Fe3O4 nanoparticles in lipid vesicles. Langmuir 23, 9546–9550 (2007).

    CAS  Google Scholar 

  85. Lian, T. & Ho, R. J. Y. Trends and developments in liposome drug delivery systems. J. Pharm. Sci. 90, 667–680 (2001).

    CAS  Google Scholar 

  86. Wang, H. F. et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc. Natl Acad. Sci. USA 102, 15752–15756 (2005).

    CAS  Google Scholar 

  87. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    CAS  Google Scholar 

  88. Landis, W. J. The strength of a calcified tissue depends in part on the molecular-structure and organization of its constituent mineral crystals in their organic matrix. Bone 16, 533–544 (1995).

    CAS  Google Scholar 

  89. Gwynn, I., Wade, S., Ito, K. & Richards, R. G. Novel aspects to the structure of rabbit articular cartilage. European Cells Mater. 4, 18–29 (2002).

    Google Scholar 

  90. Lee, H., Lee, B. P. & Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448, 338–341 (2007).

    CAS  Google Scholar 

  91. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    CAS  Google Scholar 

  92. You, C. C., Verma, A. & Rotello, V. M. Engineering the nanoparticle-biomacromolecule interface. Soft Matter 2, 190–204 (2006).

    CAS  Google Scholar 

  93. Yang, Z. Q., Huck, W. T. S., Clarke, S. M., Tajbakhsh, A. R. & Terentjev, E. M. Shape-memory nanoparticles from inherently non-spherical polymer colloids. Nature Mater. 4, 486–490 (2005).

    CAS  Google Scholar 

  94. Sonnichsen, C. et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002).

    CAS  Google Scholar 

  95. Pelton, M. et al. Ultrafast resonant optical scattering from single gold nanorods: Large nonlinearities and plasmon saturation. Phys. Rev. B 73, 155419 (2006).

    Google Scholar 

  96. Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104, 1153–1175 (2000).

    CAS  Google Scholar 

  97. Wiley, B. J., Xiong, Y. J., Li, Z. Y., Yin, Y. D. & Xia, Y. A. Right bipyramids of silver: A new shape derived from single twinned seeds. Nano Lett. 6, 765–768 (2006).

    CAS  Google Scholar 

  98. Raviv, U. et al. Cationic liposome-microtubule complexes: Pathways to the formation of two-state lipid-protein nanotubes with open or closed ends. Proc. Natl Acad. Sci. USA 102, 11167–11172 (2005).

    CAS  Google Scholar 

  99. Schneider, G. & Decher, G. From functional core/shell nanoparticles prepared via layer-by-layer deposition to empty nanospheres. Nano Lett. 4, 1833–1839 (2004).

    CAS  Google Scholar 

  100. Teranishi, T., Inoue, Y., Nakaya, M., Oumi, Y. & Sano, T. Nanoacorns: Anisotropically phase-segregated CoPd sulfide nanoparticles. J. Am. Chem. Soc. 126, 9914–9915 (2004).

    CAS  Google Scholar 

  101. Yoshimura, S., Takano, K. & Hachisu, S. in Polymer Colloids II (ed. Fitch, R. M.) 139 (Plenum, New York, 1980).

    Google Scholar 

  102. Manna, L., Scher, E. C. & Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 122, 12700–12706 (2000).

    CAS  Google Scholar 

  103. Goddard, T. D., Huang, C. C. & Ferrin, T. E. Software extensions to UCSF Chimera for interactive visualization of large molecular assemblies. Structure 13, 473–482 (2005).

    CAS  Google Scholar 

  104. Yoo, P. J. et al. Spontaneous assembly of viruses on multilayered polymer surfaces. Nature Mater. 5, 234–240 (2006).

    CAS  Google Scholar 

  105. Ewert, K. K. et al. A columnar phase of dendritic lipid-based cationic liposome-DNA complexes for gene delivery: Hexagonally ordered cylindrical micelles embedded in a DNA honeycomb lattice. J. Am. Chem. Soc. 128, 3998–4006 (2006).

    CAS  Google Scholar 

  106. Autumn, K. et al. Adhesive force of a single gecko foot-hair. Nature 405, 681–685 (2000).

    CAS  Google Scholar 

Download references

Acknowledgements

Y.G. and J.I. thank the US-Israel Binational Science Foundation for Grant #2006032; MA was supported by ONR award no. N00014-05-1-0540 and by BASF Corporation-002058; the sections on friction (J.I. and Y.M.) were supported by DOE Grant DE-FG02-87ER45331, and the work on carbon nanotubes (K.K.) was supported by Norwegian Research Council grant no. 166731. This work was also partially funded by the MRSEC Program of the NSF under award number DMR05-20415. We thank Wren Greene and Noshir Pesika for their helpful comments on the ms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Israelachvili.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Min, Y., Akbulut, M., Kristiansen, K. et al. The role of interparticle and external forces in nanoparticle assembly. Nature Mater 7, 527–538 (2008). https://doi.org/10.1038/nmat2206

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2206

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing