Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photonic metamaterials by direct laser writing and silver chemical vapour deposition


Metamaterials are artificial materials that—unlike natural substances—enable magnetism to be achieved at optical frequencies1,2,3. The vast majority of photonic metamaterials4,5 has been fabricated by electron-beam lithography and evaporation of metal films, both of which are well-established two-dimensional (2D) technologies. Although stacking of three6 or four7 functional layers made using these methods has been reported, a truly 3D fabrication approach would be preferable for 3D photonic metamaterials. Here, we report first steps in this direction by using a combination of direct laser writing8,9 and silver chemical vapour deposition10,11—the 3D analogues of electron-beam lithography and evaporation, respectively. The optical characterization of a planar test structure composed of elongated split-ring resonators is in good agreement with theory. Retrieval of the effective optical parameters reveals the importance of bi-anisotropy. Once suitable theoretical blueprints are available, our fabrication approach will enable rapid prototyping of truly 3D photonic metamaterials.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Metamaterial structures.
Figure 2: Electron micrographs of fabricated structures.
Figure 3: Normal-incidence optical transmittance spectra.
Figure 4: Retrieved effective metamaterial parameters.


  1. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

    Article  Google Scholar 

  2. Linden, S. et al. Magnetic response of metamaterials at 100 Terahertz. Science 306, 1351–1353 (2004).

    CAS  Article  Google Scholar 

  3. Cai, W. et al. Metamagnetics with rainbow colors. Opt. Express 15, 3333–3341 (2007).

    Article  Google Scholar 

  4. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    CAS  Article  Google Scholar 

  5. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

    CAS  Article  Google Scholar 

  6. Dolling, G., Wegener, M. & Linden, S. Realization of a three-functional-layer negative-index photonic metamaterial. Opt. Lett. 32, 551–553 (2007).

    CAS  Article  Google Scholar 

  7. Liu, N. et al. Three-dimensional photonic metamaterials at optical frequencies. Nature Mater. 7, 31–37 (2008).

    CAS  Article  Google Scholar 

  8. Kawata, S., Sun, H.-B., Tanaka, T. & Takada, K. Finer features for functional microdevices. Nature 412, 697–698 (2001).

    CAS  Article  Google Scholar 

  9. Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater. 3, 444–447 (2004).

    CAS  Article  Google Scholar 

  10. Hampden-Smith, M. J. & Kodas, T. T. Chemical vapor deposition of metals: Part 1. An overview of CVD processes. Chem. Vap. Deposition 1, 8–23 (1995).

    CAS  Article  Google Scholar 

  11. Eisenbraun, E. T., Klaver, A., Patel, Z., Nuesca, G. & Kaloyeros, A. E. Low temperature metalorganic chemical vapor deposition of conformal silver coatings for applications in high aspect ratio structures. J. Vac. Sci. Technol. B 19, 585–588 (2001).

    CAS  Article  Google Scholar 

  12. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    CAS  Article  Google Scholar 

  13. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    CAS  Article  Google Scholar 

  14. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    CAS  Article  Google Scholar 

  15. Leonhardt, U. & Philbin, T. G. Quantum levitation by left-handed metamaterials. New J. Phys. 9, 254:1–11 (2007).

    Article  Google Scholar 

  16. Busch, K. et al. Periodic nanostructures for photonics. Phys. Rep. 444, 101–202 (2007).

    Article  Google Scholar 

  17. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    CAS  Article  Google Scholar 

  18. Formanek, F. et al. Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization. Opt. Express 14, 800–809 (2006).

    CAS  Article  Google Scholar 

  19. <>.

  20. Schröter, U. & Heitmann, D. Grating couplers for surface plasmons excited on thin metal films in the Kretschmann–Raether configuration. Phys. Rev. B 60, 4992–4999 (1999).

    Article  Google Scholar 

  21. Zhang, S. et al. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability. Phys. Rev. Lett. 94, 037402 (2005).

    Article  Google Scholar 

  22. Schweizer, H. et al. Negative permeability around 630 nm in nanofabricated vertical meander metamaterials. Phys. Status Solidi A 204, 3886–3900 (2007).

    CAS  Article  Google Scholar 

  23. Ehrlich, D. J. & Melngailis, J. Fast room-temperature growth of SiO2 films by molecular-layer dosing. Appl. Phys. Lett. 58, 2675–2677 (1991).

    CAS  Article  Google Scholar 

  24. Smith, D. R., Schultz, S., Markoš, P. & Soukoulis, C. M. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104 (2002).

    Article  Google Scholar 

  25. Chen, X., Wu, B.-I., Kong, J. A. & Grzegorczyk, T. M. Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys. Rev. E 71, 046610 (2005).

    Article  Google Scholar 

  26. Marqués, R., Medina, F. & Rafii-El-Idrissi, R. Role of bianisotropy in negative permeability and left-handed metamaterials. Phys. Rev. B 65, 144440 (2002).

    Article  Google Scholar 

  27. Bungay, A. R., Svirko, Yu. P. & Zheludev, N. I. Equivalency of the Casimir and the Landau-Lifshitz approaches to continuous-media electrodynamics and optical activity on reflection. Phys. Rev. B 47, 11730–11735 (1993).

    CAS  Article  Google Scholar 

  28. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    CAS  Article  Google Scholar 

Download references


We thank C. M. Soukoulis for stimulating discussions. We acknowledge financial support provided by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Württemberg through the DFG-Center for Functional Nanostructures (CFN) within subprojects A1.4 and A1.5. The project PHOME acknowledges the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission, under FET-Open grant number 213390. Also we acknowledge funding by the Bundesministerium für Bildung und Forschung (BMBF). The research of G.v.F. is further supported through a DFG Emmy-Noether fellowship (DFG-Fr 1671/4-3), that of S.L. through a ‘Helmholtz-Hochschul-Nachwuchsgruppe’ (VH-NG-232).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Michael S. Rill.

Ethics declarations

Competing interests

G.v.F., M.T. and M.W. have holdings in Nanoscribe, a company that may have a commercial interest in the results of this research and technology.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rill, M., Plet, C., Thiel, M. et al. Photonic metamaterials by direct laser writing and silver chemical vapour deposition. Nature Mater 7, 543–546 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing