Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical gain by a simple photoisomerization process

Abstract

Organic holographic materials are pursued as versatile and cheap data-storage materials. It is generally assumed that under steady-state conditions, only photorefractive holographic media exhibit a non-local response to a light-intensity pattern, which results in an asymmetric two-beam coupling or ‘gain’, where intensity is transferred from one beam to the other as a measure of writing efficiency. Here, we demonstrate non-local holographic recording in a non-photorefractive material. We demonstrate that reversible photoisomerization gratings recorded in a non-photorefractive azo-based material exhibit large optical gain coefficients beyond 1,000 cm−1, even for polarization gratings. The grating characteristics differ markedly from classical photorefractive features, but can be modelled by considering the influence of the Poynting vector on the photoisomerization. The external control of the Poynting vector enables manipulation of the gain coefficient, including its sign (the direction of energy exchange), a novel phenomenon we refer to as ‘gain steering’. A very high sensitivity of about 100 cm2 J−1 was achieved. This high sensitivity, combined with a high spatial resolution, suggests a great technical advantage for applications in image processing and phase conjugation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal evolution of the gratings.
Figure 2: Experimental dependencies of the characteristic grating parameters.
Figure 3: Schematic diagram of the model.
Figure 4: Influence of gain steering on different recording geometries.
Figure 5: Temporal evolution of gain steering.

Similar content being viewed by others

References

  1. Günter, P. & Huignard, J.-P. (eds) Topics in Applied Physics Vol. 61 and 62 (Springer, Berlin, 1989).

  2. Meerholz, K., Volodin, B. L., Sandalphon, Kippelen, B. & Peyghambarian, N. A photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 371, 497–500 (1994).

    Article  CAS  Google Scholar 

  3. Ostroverkhova, O. & Moerner, W. E. Organic photorefractives: mechanisms, materials and applications. Chem. Rev. 104, 3267–3314 (2004).

    Article  CAS  Google Scholar 

  4. Natansohn, A. & Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev. 102, 4139–4175 (2002).

    Article  CAS  Google Scholar 

  5. Delaire, J. A. & Nakatani, K. Linear and nonlinear optical properties of photochromic molecules and materials. Chem. Rev. 100, 1817–1845 (2000).

    Article  CAS  Google Scholar 

  6. Berg, R. H., Hvilsted, S. & Ramanujam, P. S. Peptide oligomers for holographic storage. Nature 383, 505–508 (2004).

    Article  Google Scholar 

  7. Rasmussen, P. H., Ramanujam, P. S., Hvilsted, S. & Berg, R. H. A remarkably efficient azobenzene peptide for holographic information storage. J. Am. Chem. Soc. 121, 4738–4743 (1999).

    Article  CAS  Google Scholar 

  8. Cheben, P., del Monte, F., Worsfold, J. D., Carlsson, D. J. & Mackenzie, J. D. A photorefractive organically modified silica glass with high optical gain. Nature 408, 64–67 (2000).

    Article  CAS  Google Scholar 

  9. Lagugne-Labarthet, F. et al. Spectroscopic and optical characterization of a series of azobenzene-containing side-chain liquid crystalline polymers. Macromolecules 33, 6815–6823 (2000).

    Article  Google Scholar 

  10. Darracq, B., Chaput, F., Lahlil, K., Levy, Y. & Boilot, J.-P. Photoinscription of surface relief gratings on azo-hybrid gels. Adv. Mater. 10, 1133–1136 (1998).

    Article  CAS  Google Scholar 

  11. Frey, L. et al. Surface and volume grating investigated by the moving grating technique in sol–gel materials. Opt. Commun. 173, 11–16 (2000).

    Article  CAS  Google Scholar 

  12. Khoo, I. C. Holographic grating formation in dye- and fullerene C60-doped nematic liquid-crystal film. Opt. Lett. 20, 2137–2139 (1995).

    Article  CAS  Google Scholar 

  13. Raschellà, R. et al. Photorefractive gratings in DR1-doped hybrid sol–gel films. Opt. Mater. 25, 419–423 (2004).

    Article  Google Scholar 

  14. Sturman, B. I. Dynamic holography effects in ferroelectrics induced by spatially oscillating photovoltaic currents. J. Opt. Soc. Am. B 8, 1333–1341 (1991).

    Article  CAS  Google Scholar 

  15. Shumelyuk, A., Hartwig, U., Buse, K., Odulov, S. & Woike, T. Linearity of index grating recording with spatially oscillating photovoltaic currents. J. Opt. Soc. Am. B 23, 857–860 (2006).

    Article  CAS  Google Scholar 

  16. Ramos, G., Belenguer, T., Bernabeu, E., del Monte, F. & Levy, D. A Novel photoconductive PVK/SiO2 interpenetrated network prepared by the sol–gel process. J. Phys. Chem. B 107, 110–112 (2003).

    Article  CAS  Google Scholar 

  17. Bittner, R. & Meerholz, K. in Photorefractive Materials and their Applications (eds Günter, P. & Huignard, J. P.) (Springer, Berlin, 2006).

    Google Scholar 

  18. Hasegawa, M., Yamamoto, T., Kanazawa, A., Shiono, T. & Ikeda, T. Photochemically induced dynamic grating by means of side chain polymer liquid crystals. Chem. Mater. 11, 2764 (1999).

    Article  CAS  Google Scholar 

  19. Ishow, E. et al. Structural and photoisomerization cross studies of polar photochromic monomeric glasses forming surface relief gratings. Chem. Mater. 18, 1261–1267 (2006).

    Article  CAS  Google Scholar 

  20. Mecher, E. et al. Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination. Nature 418, 959–964 (2002).

    Article  CAS  Google Scholar 

  21. Steenwinckel, D. V., Hendrickx, E., Persoons, A., Van den Broeck, K. & Samyn, C. Influence of the chromophore ionization potential on speed and magnitude of photorefractive effects in poly(N-vinylcarbazole) based polymer composites. J. Chem. Phys. 112, 11030–11037 (2000).

    Article  Google Scholar 

  22. Long, T. M. & Swager, T. M. Using internal free volume to increase chromophore alignment. J. Am. Chem. Soc. 124, 3826–3827 (2002).

    Article  CAS  Google Scholar 

  23. Chaput, F. et al. New nonlinear sol–gel films exhibiting photorefractivity. Chem. Mater. 8, 312–314 (1996).

    Article  CAS  Google Scholar 

  24. Würthner, F., Wortmann, R. & Meerholz, K. Chromophore design for photorefractive organic materials. ChemPhysChem 3, 17–31 (2002).

    Article  Google Scholar 

  25. Kogelnik, H. Coupled wave theory for thick hologram gratings. Bell System Tech. J. 48, 2909–2947 (1969).

    Article  Google Scholar 

  26. Sutter, K. & Günter, P. Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane. J. Opt. Soc. Am. B 7, 2274–2278 (1990).

    Article  CAS  Google Scholar 

  27. Pedersen, H. C., Johansen, P. M. & Pedersen, T. G. Analytical modeling of two beam coupling during grating translation in photorefractive media. Opt. Commun. 192, 377–385 (2001).

    Article  CAS  Google Scholar 

  28. Ashley, J. et al. Holographic data storage. IBM J. Res. Develop. 44, 341–368 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge fruitful discussions with B. Sturman (Institute of Automation and Electrometry, Novosibirsk), K. Buse (University of Bonn), S. Köber, A. Ruhl and M. Salvador (all University of Cologne). We also thank N. Benter (University of Bonn) for electro-optic measurements. F.d.M. thanks MAT2006-02394 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Meerholz.

Supplementary information

Supplementary Information

Supplementary Figures S1–S5 (PDF 202 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallego-Gómez, F., del Monte, F. & Meerholz, K. Optical gain by a simple photoisomerization process. Nature Mater 7, 490–497 (2008). https://doi.org/10.1038/nmat2186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2186

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing