Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electric-field control of local ferromagnetism using a magnetoelectric multiferroic

A Corrigendum to this article was published on 01 August 2008

Abstract

Multiferroics are of interest for memory and logic device applications, as the coupling between ferroelectric and magnetic properties enables the dynamic interaction between these order parameters. Here, we report an approach to control and switch local ferromagnetism with an electric field using multiferroics. We use two types of electromagnetic coupling phenomenon that are manifested in heterostructures consisting of a ferromagnet in intimate contact with the multiferroic BiFeO3. The first is an internal, magnetoelectric coupling between antiferromagnetism and ferroelectricity in the BiFeO3 film that leads to electric-field control of the antiferromagnetic order. The second is based on exchange interactions at the interface between a ferromagnet (Co0.9Fe0.1) and the antiferromagnet. We have discovered a one-to-one mapping of the ferroelectric and ferromagnetic domains, mediated by the colinear coupling between the magnetization in the ferromagnet and the projection of the antiferromagnetic order in the multiferroic. Our preliminary experiments reveal the possibility to locally control ferromagnetism with an electric field.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: An approach for electrical control of ferromagnetism.
Figure 2: Structural and chemical characterization of exchange heterostructures.
Figure 3: Microscopic evidence for coupling.
Figure 4: Mechanism of coupling in CoFe/BFO heterostructures.
Figure 5: Dynamic switching device structure.
Figure 6: Electrical control of local ferromagnetism.

References

  1. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003).

    Article  CAS  Google Scholar 

  2. Eerenstein, W., Mathur, N. D. & Scott, J. F. Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006).

    Article  CAS  Google Scholar 

  3. Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nature Mater. 6, 21–29 (2007).

    Article  CAS  Google Scholar 

  4. Kiselev, S. V., Ozerov, R. P. & Zhdanov, G. S. Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov. Phys. Dokl 7, 742–744 (1963).

    Google Scholar 

  5. Teague, J. R., Gerson, R. & James, W. J. Dielectric hysteresis in single crystal BiFeO3 . Solid State Commun. 8, 1073–1074 (1970).

    Article  CAS  Google Scholar 

  6. Chu, Y.-H. et al. Domain control in multiferroic BiFeO3 through substrate vicinality. Adv. Mater. 19, 2662–2666 (2007).

    Article  CAS  Google Scholar 

  7. Zavaliche, F. et al. Multiferroic BiFeO3 films: Domain structure and polarization dynamics. Phase Transit. 79, 991–1017 (2006).

    Article  CAS  Google Scholar 

  8. Ederer, C. & Spaldin, N. A. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) (2005).

    Article  Google Scholar 

  9. Zhao, T. et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater. 5, 823–829 (2006).

    Article  CAS  Google Scholar 

  10. Meiklejohn, W. H. & Bean, C. P. New magnetic anisotropy. Phys. Rev. 102, 1413–1414 (1956).

    Article  Google Scholar 

  11. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article  Google Scholar 

  12. Dho, J. & Blamire, M. G. Competing functionality in multiferroic YMnO3 . Appl. Phys. Lett. 87, 252504 (2005).

    Article  Google Scholar 

  13. Martí, X. et al. Exchange bias between magnetoelectric YMnO3 and ferromagnetic SrRuO3 epitaxial films. J. Appl. Phys. 99, 08P302 (2006).

    Article  Google Scholar 

  14. Dho, J., Qi, X., Kim, H., MacManus-Driscoll, J. L. & Blamire, M. G. Large electric polarization and exchange bias in multiferroic BiFeO3 . Adv. Mater. 18, 1445–1448 (2006).

    Article  CAS  Google Scholar 

  15. Béa, H. et al. Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films. Appl. Phys. Lett. 89, 242114 (2006).

    Article  Google Scholar 

  16. Martin, L. W. et al. Room temperature exchange bias and spin valves based on BiFeO3/SrRuO3/SrTiO3/Si (001) heterostructures. Appl. Phys. Lett. 91, 172513 (2007).

    Article  Google Scholar 

  17. Borisov, P., Hochstrat, A., Chen, X., Kleeman, W. & Binek, C. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94, 117203 (2005).

    Article  Google Scholar 

  18. Laukhin, V. et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 97, 227201 (2006).

    Article  CAS  Google Scholar 

  19. LeBeugle, D. et al. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Preprint at <http://arxiv.org/abs/0802.2915> (2008).

  20. Nolting, F. et al. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature 405, 767–769 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work at Berkeley is supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy under contract No. DE-AC02-05CH1123. The authors from both Berkeley and Stanford would also like to acknowledge the support of the Western Institute of Nanoelectronics and acknowledge the support of the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lane W. Martin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chu, YH., Martin, L., Holcomb, M. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater 7, 478–482 (2008). https://doi.org/10.1038/nmat2184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing