High-frequency micromechanical resonators from aluminium–carbon nanotube nanolaminates

Abstract

At micro- and nanoscales, materials with high Young’s moduli and low densities are of great interest for high-frequency micromechanical resonator devices1,2,3,4,5,6,7,8. Incorporating carbon nanotubes (CNTs), with their unmatched properties, has added functionality to many man-made composites9,10,11. We report on the fabrication of ≤100-nm-thick laminates by sputter-deposition of aluminium onto a two-dimensional single-walled CNT network12,13. These nanolaminates—composed of Al, its native oxide Al2O3 and CNTs—are fashioned, in a scalable manner, into suspended doubly clamped micromechanical beams. Dynamic flexural measurements show marked increases in resonant frequencies for nanolaminates with Al–CNT laminae. Such increases, further supported by quasi-static flexural measurements, are partly attributable to enhancements in elastic properties arising from the addition of CNTs. As a consequence, these nanolaminate micromechanical resonators show significant suppression of mechanical nonlinearity and enhanced strength, both of which are advantageous for practical applications and analogous to biological nanocomposites, similarly composed of high-aspect-ratio, mechanically superior mineral platelets in a soft protein matrix14.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Fabrication of AAC laminate micromechanical resonator.
Figure 2: Dynamic flexural measurements of laminate micromechanical resonators.
Figure 3: Quasi-static flexural measurements.
Figure 4: Large-amplitude dynamic-flexural-response measurements.

References

  1. 1

    Henry Huang, X. M., Zorman, C. A., Mehregany, M. & Roukes, M. L. Nanoelectromechanical systems: Nanodevice motion at microwave frequencies. Nature 421, 496–496 (2003).

    Article  Google Scholar 

  2. 2

    Hutchinson, A. B. et al. Dissipation in nanocrystalline-diamond nanomechanical resonators. Appl. Phys. Lett. 84, 972–974 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Sazonova, V. et al. A tunable carbon nanotube electromechanical oscillator. Nature 431, 284–287 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Ekinci, K. L. & Roukes, M. L. Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005).

    Article  Google Scholar 

  5. 5

    Aldridge, J. S. & Cleland, A. N. Noise-enabled precision measurements of a Duffing nanomechanical resonator. Phys. Rev. Lett. 94, 156403 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Bunch, J. S. et al. Electromechanical resonators from graphene sheets. Science 315, 490–493 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Imboden, M., Mohanty, P., Gaidarzhy, A., Rankin, J. & Sheldon, B. W. Scaling of dissipation in megahertz-range micromechanical diamond oscillators. Appl. Phys. Lett. 90, 173502 (2007).

    Article  Google Scholar 

  8. 8

    Verbridge, S. S., Shapiro, D. F., Craighead, H. G. & Parpia, J. M. Macroscopic tuning of nanomechanics: Substrate bending for reversible control of frequency and quality factor of nanostring resonators. Nano Lett. 7, 1728–1735 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Mamedov, A. A. et al. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nature Mater. 1, 190–194 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Zhan, G.-D., Kuntz, J. D., Wan, J. & Mukherjee, A. K. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nature Mater. 2, 38–42 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Veedu, V. P. et al. Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nature Mater. 5, 457–462 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Rao, S. G., Huang, L., Setyawan, W. & Hong, S. Nanotube electronics: Large-scale assembly of carbon nanotubes. Nature 425, 36–37 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Lee, M. et al. Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires. Nature Nanotechnol. 1, 66–71 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Gao, H., Ji, B., Jager, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Dorignac, J., Kalinowski, A., Erramilli, S. & Mohanty, P. Dynamical response of nanomechanical oscillators in immiscible viscous fluid for in vitro biomolecular recognition. Phys. Rev. Lett. 96, 186105 (2006).

    Article  Google Scholar 

  17. 17

    Badzey, R. L. & Mohanty, P. Coherent signal amplification in bistable nanomechanical oscillators by stochastic resonance. Nature 437, 995–998 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Shim, S.-B., Imboden, M. & Mohanty, P. Synchronized oscillation in coupled nanomechanical oscillators. Science 316, 95–99 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Knobel, R. G. & Cleland, A. N. Nanometre-scale displacement sensing using a single electron transistor. Nature 424, 291–293 (2003).

    CAS  Article  Google Scholar 

  20. 20

    Schwab, K. C. & Roukes, M. L. Putting mechanics into quantum mechanics. Phys. Today 58, 36–42 (2005).

    Article  Google Scholar 

  21. 21

    Bishop, D., Heuer, A. & Williams, D. Microelectromechanical systems: Technology and applications. Mater. Res. Soc. Bull. 4, 282 (2001).

    Article  Google Scholar 

  22. 22

    Ruoff, R. S. Time, temperature, and load: The flaws of carbon nanotubes. Proc. Natl Acad. Sci. USA 103, 6779–6780 (2006).

    CAS  Article  Google Scholar 

  23. 23

    Hemker, K. J. & Sharpe, W. N. Microscale characterization of mechanical properties. Annu. Rev. Mater. Res. 37, 93–126 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Chawla, K. K. in Composite Materials (eds Ilschner, B. & Grant, N. J.) (Springer, Berlin, 1987).

    Google Scholar 

  25. 25

    Maranganti, R. & Sharma, P. Length scales at which classical elasticity breaks down for various materials. Phys. Rev. Lett. 98, 195504 (2007).

    CAS  Article  Google Scholar 

  26. 26

    Shim, S. B. et al. Micromechanical resonators fabricated from lattice-matched and etch-selective GaAs/InGaP/GaAs heterostructures. Appl. Phys. Lett. 91, 133505 (2007).

    Article  Google Scholar 

  27. 27

    Samuel, B. A. & Haque, M. A. Room temperature relaxation of freestanding nanocrystalline gold films. J. Micromech. Microeng. 16, 929–934 (2006).

    CAS  Article  Google Scholar 

  28. 28

    Lachut, M. J. & Sader, J. E. Effect of surface stress on the stiffness of cantilever plates. Phys. Rev. Lett. 99, 206102 (2007).

    Article  Google Scholar 

  29. 29

    Xiong, Q., Duarte, N., Tadigadapa, S. & Eklund, P. C. Force–deflection spectroscopy: A new method to determine the Young’s modulus of nanofilaments. Nano Lett. 6, 1904 (2006).

    CAS  Article  Google Scholar 

  30. 30

    Kaajakari, V., Mattila, T., Oja, A. & Seppa, H. Nonlinear limits for single-crystal silicon microresonators. J. Microelectromech. S 13, 715 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work is mainly supported by the Seoul R&BD program. S.H. and Y.D.P. are partly supported by MOCIE. K.C. and Y.D.P. are partly supported by Samsung Electronics Corporation and KOSEF though CSCMR. J.H.B. and Y.D.K. would like to thank the Seoul Science Fellowship program; S.H. would like to acknowledge support from the MOST NRL program; M.K. would like to acknowledge KOSEF (ROA-2007-000-10014-0) and Y.D.P. would like to acknowledge the KRF (MOEHRD, Basic Research Promotion Fund) (KRF-2006-311-C00297). We would like to thank S. W. Cho for help with the focused ion beam experiments and W. S. Choi and T. W. Noh for the optical reflectivity measurements.

Author information

Affiliations

Authors

Contributions

J.H.B. conducted the quasi-static flexural measurements with assistance from B.Y.L. and S.H. Y.D.K. conducted the dynamic flexural measurements with assistance from J.H.B. and S.S.H. S.S.H. developed the micromechanical resonator fabrication method with assistance from J.H.B. and Y.D.K. (B.Y.L. and S.H. assembled the CNT network; S.R.L. and K.C. deposited Al). J.H.J. and M.K. conducted the TEM characterizations. Y.D.P. designed the experiment with assistance from J.H.B., Y.D.K. and S.S.H. J.H.B., Y.D.K. and Y.D.P. analysed the data with assistance from S.S.H. Y.D.P. prepared the manuscript with assistance from J.H.B., Y.D.K., S.S.H., M.K., K.C. and S.H.

Corresponding authors

Correspondence to Seung Sae Hong or Yun Daniel Park.

Supplementary information

Supplementary Information

Supplementary Figures S1–S15 and Supplementary Tables S1–S2 (PDF 1428 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bak, J., Kim, Y., Hong, S. et al. High-frequency micromechanical resonators from aluminium–carbon nanotube nanolaminates. Nature Mater 7, 459–463 (2008). https://doi.org/10.1038/nmat2181

Download citation

Further reading