Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bulk superconductivity at 38 K in a molecular system


C60-based solids1 are archetypal molecular superconductors with transition temperatures (Tc) as high as 33 K (refs 2–4). Tc of face-centred-cubic (f.c.c.) A3C60 (A=alkali metal) increases monotonically with inter C60 separation, which is controlled by the A+ cation size. As Cs+ is the largest such ion, Cs3C60 is a key material in this family. Previous studies revealing trace superconductivity in CsxC60 materials have not identified the structure or composition of the superconducting phase owing to extremely small shielding fractions and low crystallinity. Here, we show that superconducting Cs3C60 can be reproducibly isolated by solvent-controlled synthesis and has the highest Tc of any molecular material at 38 K. In contrast to other A3C60 materials, two distinct cubic Cs3C60 structures are accessible. Although f.c.c. Cs3C60 can be synthesized, the superconducting phase has the A15 structure based uniquely among fullerides on body-centred-cubic packing. Application of hydrostatic pressure controllably tunes A15 Cs3C60 from insulating at ambient pressure to superconducting without crystal structure change and reveals a broad maximum in Tc at 7 kbar. We attribute the observed Tc maximum as a function of inter C60separation—unprecedented in fullerides but reminiscent of the atom-based cuprate superconductors—to the role of strong electronic correlations near the metal–insulator transition onset.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Candidate crystal structures for Cs3C60.
Figure 2: Superconductivity under pressure in A15 Cs3C60.
Figure 3: Structural characterization of A15 Cs3C60.
Figure 4: Superconducting transition temperature, Tc, as a function of volume occupied per fulleride anion, V, at ambient temperature.


  1. Hebard, A. F. et al. Superconductivity at 18 K in potassium-doped fullerene (C60). Nature 350, 600–601 (1991).

    Article  CAS  Google Scholar 

  2. Iwasa, Y. & Takenobu, T. Superconductivity, Mott–Hubbard states, and molecular orbital order in intercalated fullerides. J. Phys. Condens. Matter 15, R495–R519 (2003).

    Article  CAS  Google Scholar 

  3. Gunnarsson, O. Superconductivity in fullerides. Rev. Mod. Phys. 69, 575–606 (1997).

    Article  CAS  Google Scholar 

  4. Tanigaki, K. et al. Superconductivity at 33 K in cesium rubidium fulleride (CsxRbyC60). Nature 352, 222–223 (1991).

    Article  CAS  Google Scholar 

  5. Zhou, O. & Cox, D. E. Structures of fullerene (C60) intercalation compounds. J. Phys. Chem. Solids 53, 1373–1390 (1992).

    Article  CAS  Google Scholar 

  6. Kelty, S. P., Chen, C. C. & Lieber, C. M. Superconductivity at 30 K in cesium-doped fullerene. Nature 352, 223–225 (1991).

    Article  CAS  Google Scholar 

  7. Kinoshita, N., Tanaka, Y., Tokumoto, M. & Matsumiya, S. Superconductivity and electron spin resonance in Cs-doped C60 . Solid State Commun. 83, 883–886 (1992).

    Article  CAS  Google Scholar 

  8. Palstra, T. T. M. et al. Superconductivity at 40 K in cesium doped C60 . Solid State Commun. 93, 327–330 (1995).

    Article  CAS  Google Scholar 

  9. Messaoudi, A., Conard, J., Setton, R. & Beguin, F. New intercalation compounds of C60 with cesium. Chem. Phys. Lett. 202, 506–508 (1993).

    Article  CAS  Google Scholar 

  10. Fujiki, S. et al. Structure and Raman scattering of Cs3C60 under high pressure. Phys. Rev. B. 62, 5366–5369 (2000).

    Article  CAS  Google Scholar 

  11. Cooke, S., Glenis, S., Chen, X., Lin, C. L. & Labes, M. New preparation of superconducting alkali-metal fullerides utilizing monomethylamine as solvent. J. Mater. Chem. 6, 1–3 (1996).

    Article  CAS  Google Scholar 

  12. Ganin, A. Y. et al. Methylaminated potassium fulleride, (CH3NH2)K3C60: Towards hyperexpanded fulleride lattices. J. Am. Chem. Soc. 128, 14784–14785 (2006).

    Article  CAS  Google Scholar 

  13. Takabayashi, Y., Ganin, A. Y., Rosseinsky, M. J. & Prassides, K. Direct observation of magnetic ordering in the (CH3NH2)K3C60 fulleride. Chem. Commun. 870–872 (2007).

  14. Dahlke, P., Denning, M. S., Henry, P. F. & Rosseinsky, M. J. Superconductivity in expanded fcc C603− fullerides. J. Am. Chem. Soc. 122, 12352–12361 (2000).

    Article  CAS  Google Scholar 

  15. Stephens, P. W. et al. Structure of single-phase superconducting potassium buckminsterfullerene (K3C60). Nature 351, 632–634 (1991).

    Article  CAS  Google Scholar 

  16. Lof, R. W., van Veenendaal, M. A., Koopmans, B., Jonkman, H. T. & Sawatzky, G. A. Band gap, excitons, and Coulomb interaction in solid fullerene C60 . Phys. Rev. Lett. 68, 3924–2927 (1992).

    Article  CAS  Google Scholar 

  17. Gunnarsson, O., Koch, E. & Martin, R. M. Mott–Hubbard insulators for systems with orbital degeneracy. Phys. Rev. B 56, 1146–1152 (1997).

    Article  CAS  Google Scholar 

  18. Han, J. E., Koch, E. & Gunnarsson, O. Metal–insulator transitions. Influence of lattice structure, Jahn–Teller effect, and Hund’s rule coupling. Phys. Rev. Lett. 84, 1276–1279 (2000).

    Article  CAS  Google Scholar 

  19. Han, J. E., Gunnarsson, O. & Crespi, V. H. Strong superconductivity with local Jahn–Teller phonons in C60 solids. Phys. Rev. Lett. 90, 167006 (2003).

    Article  CAS  Google Scholar 

  20. Capone, M., Fabrizio, M., Castellani, C. & Tosatti, E. Strongly correlated superconductivity. Science 296, 2364–2366 (2002).

    Article  CAS  Google Scholar 

  21. Diederichs, J., Schilling, J. S., Herwig, K. W. & Yelon, W. B. Dependence of the superconducting transition temperature and lattice parameter on hydrostatic pressure for Rb3C60 . J. Phys. Chem. Solids 58, 123–132 (1997).

    Article  CAS  Google Scholar 

  22. Zhou, O. et al. Compressibility of M3C60 fullerene superconductors: Relation between Tc and lattice parameter. Science 255, 833–835 (1992).

    Article  CAS  Google Scholar 

  23. Margadonna, S. et al. Pressure and temperature evolution of the structure of the superconducting Na2CsC60 fulleride. J. Solid State Chem. 145, 471–478 (1999).

    Article  CAS  Google Scholar 

Download references


We thank EPSRC for financial support under EP/C511794 and GR/S77820 and for access to the synchrotron X-ray facilities at the SRS (where we thank A. Lennie and M. A. Roberts for assistance on stations 9.5 and 9.1) and the European Synchrotron Radiation Facility (where we thank A. N. Fitch, W. van Beek and D. Papanikolaou for assistance on beamlines ID31 and BM1).

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Matthew J. Rosseinsky or Kosmas Prassides.

Supplementary information

Supplementary Information

Supplementary Scheme S1,S2, Supplementary Table S1–S2 and Supplementary Figures S1–S6 (PDF 2387 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ganin, A., Takabayashi, Y., Khimyak, Y. et al. Bulk superconductivity at 38 K in a molecular system. Nature Mater 7, 367–371 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing