Review Article | Published:

Biosensing with plasmonic nanosensors

Nature Materials volume 7, pages 442453 (2008) | Download Citation

Subjects

Abstract

Recent developments have greatly improved the sensitivity of optical sensors based on metal nanoparticle arrays and single nanoparticles. We introduce the localized surface plasmon resonance (LSPR) sensor and describe how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation. We then describe recent progress in three areas representing the most significant challenges: pushing sensitivity towards the single-molecule detection limit, combining LSPR with complementary molecular identification techniques such as surface-enhanced Raman spectroscopy, and practical development of sensors and instrumentation for routine use and high-throughput detection. This review highlights several exceptionally promising research directions and discusses how diverse applications of plasmonic nanoparticles can be integrated in the near future.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    The Bakerian Lecture: experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. 147, 145–181 (1857).

  2. 2.

    & Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006).

  3. 3.

    & Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

  4. 4.

    , , & Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl Acad. Sci. USA 97, 996–1001 (2000).

  5. 5.

    & Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

  6. 6.

    & Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. I. Theory. Anal. Biochem. 262, 137–156 (1998).

  7. 7.

    , & Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).

  8. 8.

    et al. Towards advanced chemical and biological nanosensors — an overview. Talanta 67, 438–448 (2005).

  9. 9.

    , , & Detection of a biomarker for Alzheimer's Disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 127, 2264–2271 (2005).

  10. 10.

    , & Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal. Chem. 78, 4416–4423 (2006).

  11. 11.

    & Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003).

  12. 12.

    et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935–938 (2003).

  13. 13.

    , , , & Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

  14. 14.

    & Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interface Electrochem. 84, 1–20 (1977).

  15. 15.

    , , & Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 36, 471–484 (2005).

  16. 16.

    et al. Surface enhanced Raman spectroscopy: New materials, concepts, characterization tools, and applications. Faraday Discuss. 132, 9–26 (2006).

  17. 17.

    et al. Spatially resolved surface enhanced second harmonic generation: Theoretical and experimental evidence for electromagnetic enhancement in the near infrared on a laser microfabricated Pt surface. J. Chem. Phys. 90, 1237–1252 (1989).

  18. 18.

    , , & A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory. J. Chem. Phys. 104, 4313–4323 (1996).

  19. 19.

    , , & Surface-enhanced infrared spectroscopy: A comparison of metal island films with discrete and non-discrete surface plasmons. Appl. Spectrosc. 54, 371–377 (2000).

  20. 20.

    Surface-enhanced spectroscopy. Rev. Mod. Phys 57, 783–826 (1985).

  21. 21.

    , , & Enhanced ratiometric pH sensing using SNAFL-2 on silver island films: Metal-enhanced fluorescence sensing. J. Fluoresc. 15, 37–40 (2005).

  22. 22.

    , & Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7, 690–696 (2007).

  23. 23.

    et al. Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 6, 355–360 (2006).

  24. 24.

    Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

  25. 25.

    The promise of plasmonics. Sci. Am. 296, 56–63 (2007).

  26. 26.

    & Superlenses to overcome the diffraction limit. Nature Mater. 7, 435–441 (2008).

  27. 27.

    , , & Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 104, 10549–10556 (2000).

  28. 28.

    et al. Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 103, 9846–9853 (1999).

  29. 29.

    et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

  30. 30.

    & Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003).

  31. 31.

    , , & Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

  32. 32.

    , , , & Nanorice: A hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006).

  33. 33.

    & Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611 (2001).

  34. 34.

    , , , & Angle-resolved nanosphere lithography: Manipulation of nanoparticle size, shape, and interparticle spacing. J. Phys. Chem. B 106, 1898–1902 (2002).

  35. 35.

    et al. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 5, 1065–1070 (2005).

  36. 36.

    et al. Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance. Surf. Sci. 601, 5057–5061 (2007).

  37. 37.

    , , , & Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 1947–1952 (2007).

  38. 38.

    , , , & In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1, 133–143 (2007).

  39. 39.

    , , , & Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43, 10400–10413 (2004).

  40. 40.

    et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33–40 (2004).

  41. 41.

    , , , & Refractive-index-sensitive, plasmon-resonant-scattering, and surface-enhanced Raman-scattering nanoparticles and arrays as biological sensing platforms. Proc. SPIE – Int. Soc. Opt. Eng. 5327, 60–73 (2004).

  42. 42.

    et al. A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J. Am. Chem. Soc. 126, 12669–12676 (2004).

  43. 43.

    et al. Abeta oligomer-induced aberrations in synapse composition, shape and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J. Neurosci. 27, 796–807 (2007).

  44. 44.

    et al. Alzheimer's Disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl Acad. Sci. USA 100, 10417–10422 (2003).

  45. 45.

    & The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

  46. 46.

    et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc. Natl Acad. Sci. USA 102, 2273–2276 (2005).

  47. 47.

    , & Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

  48. 48.

    et al. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

  49. 49.

    et al. A calcium-modulated plasmonic switch. J. Am. Chem. Soc. 130, 5836–5837 (2008).

  50. 50.

    , , & Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 108, 6961–6968 (2004).

  51. 51.

    et al. Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithographpy. J. Phys. Chem. B 109, 22351–22358 (2005).

  52. 52.

    , & Multiscale patterning of plasmonic metamaterials. Nature Nanotech. 2, 549–554 (2007).

  53. 53.

    , & Nanoparticle optics: Sensing with nanoparticle arrays and single nanoparticles. Proc. SPIE 5223, 197–207 (2003).

  54. 54.

    et al. Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. Biophys. J. 91, 4598–4604 (2006).

  55. 55.

    Confocal scanning optical microscopy and its applications for biological specimens. J. Cell Sci. 94, 175–206 (1989).

  56. 56.

    et al. Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. J. Biomed. Optics 12, 034007- (2007).

  57. 57.

    , , & Direct measurement of sizes and dynamics of single living membrane transporters using nano-optics. Nano Lett. 2, 175–182 (2002).

  58. 58.

    et al. Absorption and scattering microscopy of single metal nanoparticles. J. Phys. Chem. Chem. Phys. 8, 3486–3495 (2006).

  59. 59.

    , & Nanovid microscopy. Nature 351, 765–766 (1991).

  60. 60.

    , , , & The use of submicroscopic gold particles combined with video contrast enhancement as a simple molecular probe for the living cell. Cell Motil. Cytoskel. 6, 105–113 (1986).

  61. 61.

    & Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409–453 (2000).

  62. 62.

    et al. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 102, 064701 (2007).

  63. 63.

    , , , & Molecular specific optoacoustic imaging with plasmonic nanoparticles. Opt. Express 15, 6583–6588 (2007).

  64. 64.

    , & Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006).

  65. 65.

    , , & Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 18, 1–8 (2007).

  66. 66.

    et al. Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles. Opt. Express 14, 12930–12943 (2006).

  67. 67.

    , , , & Magnetic nanocrescents as controllable surface-enhanced Raman scattering nanoprobes for biomedical imaging. Adv. Mater. 17, 2683–2688 (2005).

  68. 68.

    , , & Nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 108, 109–116 (2004).

  69. 69.

    et al. Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition. J. Phys. Chem. B 109, 20522–20528 (2005).

  70. 70.

    , , , & Localized surface plasmon resonance spectroscopy near molecular resonances. J. Am. Chem. Soc. 128, 10905–10914 (2006).

  71. 71.

    et al. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. J. Am. Chem. Soc. 129, 7647–7656 (2007).

  72. 72.

    et al. Resonance surface plasmon spectroscopy: Low molecular weight substrate binding to cytochrome P450. J. Am. Chem. Soc. 128, 11004–11005 (2006).

  73. 73.

    , , , & Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc. Natl Acad. Sci. USA 104, 2667–2672 (2007).

  74. 74.

    , , & A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnol. 23, 741–745 (2005).

  75. 75.

    & Structural aspects of active-site of cytochrome P-450Cam. Drug Metab. Dispos. 1, 1–5 (1973).

  76. 76.

    Coupling of spin, substrate, and redox equilibria in cytochrome P450. Biochemistry 15, 5399–5406 (1976).

  77. 77.

    Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–827 (2006).

  78. 78.

    et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003).

  79. 79.

    , & On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 7, 2080–2088 (2007).

  80. 80.

    et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137–141 (2003).

  81. 81.

    , & Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by UV-vis extinction spectroscopy and electrodynamic modeling. J. Phys. Chem. B 103, 2394–2401 (1999).

  82. 82.

    , , , & Gap-dependent optical coupling of single 'bowtie' nanoantennas resonant in the visible. Nano Lett. 4, 957–961 (2004).

  83. 83.

    , , , & Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett. 5, 2246–2252 (2005).

  84. 84.

    et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nature Nanotech. 1, 47–52 (2006).

  85. 85.

    , , & Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 109, 11279–11285 (2005).

  86. 86.

    & Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

  87. 87.

    , , & A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 129, 16249–16256 (2007).

  88. 88.

    et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

  89. 89.

    in Chemical and Biochemical Applications of Lasers (ed. Moore, C. B.) Vol. 4, 101–184 (Academic, New York, 1979).

  90. 90.

    , & Pyridine-Ag 20 cluster: A model system for studying surface-enhanced Raman scattering. J. Am. Chem. Soc. 128, 2911–2919 (2006).

  91. 91.

    & Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chem. Rev. Lett. 403, 62–67 (2005).

  92. 92.

    , , & Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 106, 853–860 (2002).

  93. 93.

    , , & Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 127, 4484–4489 (2005).

  94. 94.

    , , , & Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 128, 10304–10309 (2006).

  95. 95.

    , & Localized surface plasmon resonance immunoassay and verification using surface-enhanced Raman spectroscopy. Proc. SPIE – Int. Soc. Opt. Eng. 5224, 78–85 (2003).

  96. 96.

    , & Laser desorption ionization of gramicidin S on thin silver films with matrix isolation in surface plasmon resonance excitation. J. Photochem. Photobiol. A 119, 123–135 (1998).

  97. 97.

    , & Surface plasmon resonance-laser desorption/ionization-time-of-flight mass spectrometry. Anal. Chem. 70, 2360–2365 (1998).

  98. 98.

    , & Laser-induced surface-plasmon desorption of dye molecules from aluminum films. Anal. Chem. 64, 476–478 (1992).

  99. 99.

    , , , & Visible laser desorption/ionization mass spectrometry using gold nanorods. J. Phys. Chem. C 111, 2409–2415 (2007).

  100. 100.

    , , , & Visible-laser desorption/ionization on gold nanostructures. J. Mass Spectrom. 42, 346–353 (2007).

  101. 101.

    et al. Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal. Chem. 78, 734–742 (2006).

  102. 102.

    , & Size-selected (2–10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J. Am. Chem. Soc. 127, 5304–5305 (2005).

  103. 103.

    & Nile Red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 78, 1485–1493 (2006).

  104. 104.

    et al. Size and shape separation of gold nanoparticles with preparative gel electrophoresis. J. Chromatogr. A 1167, 35–41 (2007).

  105. 105.

    & Nanoparticle-DNA conjugates bearing a specific number of short DNA strands by enzymatic manipulation of nanoparticle-bound DNA. Langmuir 21, 11330–11334 (2005).

  106. 106.

    , , & Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 123, 1471–1482 (2001).

  107. 107.

    , & Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses. J. Appl. Phys. 98, 114301 (2005).

  108. 108.

    , , & Toward a thermally robust operando surface-enhanced Raman spectroscopy substrate. J. Phys. Chem. C 111, 16827–16832 (2007).

  109. 109.

    , , & Wavelength dependence of surface-enhanced Raman scattering from Ag colloids with adsorbed CN complexes, SO32−, and pyridine. J. Phys. Chem. B 88, 5290–5296 (1984).

  110. 110.

    & Analysis of the visible absorption and SERS excitation spectra of silver sols. J. Chem. Phys. 87, 3213–3217 (1987).

  111. 111.

    , & Octadecylthiol-modified surface-enhanced Raman-spectroscopy substrates — a new method for the detection of aromatic-compounds. Environ. Sci. Technol. 26, 1950–1954 (1992).

  112. 112.

    , , , & Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

  113. 113.

    Temporal stability of thiophene self-assembled monolayers on Au (111). Mol. Cryst. Liq. Cryst. 464, 205–209 (2007).

  114. 114.

    , , , & Time-dependent phase transition of self-assembled monolayers formed by thioacetyl-terminated tolanes on Au (111). Jpn. J. Appl. Phys. 45, 5906–5910 (2006).

  115. 115.

    et al. Heat capacity measurements of two-dimensional self-assembled hexadecanethiol monolayers on polycrystalline gold. Appl. Phys. Lett. 84, 5198–5200 (2004).

  116. 116.

    , & Study of the photooxidation process of self-assembled alkanethiol monolayers. J. Am. Chem. Soc. 117, 9574–9575 (1995).

  117. 117.

    & Air stability of alkanethiol self-assembled monolayers on silver and gold surfaces J. Am. Chem. Soc. 120, 4502–4513 (1998).

  118. 118.

    & Characterization of octadecylsilane and stearic acid layers on Al2O3 surfaces by Raman spectroscopy. Langmuir 11, 1720–1725 (1995).

  119. 119.

    in Silicon Compounds: Register and Review 5th edn (eds Anderson, R., Larson, G. L. & Smith, C.) 59–60 (Huls America, Piscataway, New Jersey, 1991).

  120. 120.

    et al. Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal. Chem. 78, 6465–6475 (2006).

  121. 121.

    , , , & Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal. Chem. 77, 6976–6984 (2005).

  122. 122.

    et al. Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Anal. Chem. 77, 6134–6139 (2005).

  123. 123.

    et al. In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal. Chem. 78, 7211–7215 (2006).

  124. 124.

    , , , & Lactate and sequential lactate-glucose sensing using surface-enhanced Raman spectroscopy. Anal. Chem. 79, 6927–6932 (2007).

  125. 125.

    , & High-speed multispectral imaging of nanoplasmonic array. Opt. Express 13, 8520–8525 (2005).

  126. 126.

    , , , & Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nature Methods 4, 1015–1017 (2007).

  127. 127.

    Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755–6759 (2002).

  128. 128.

    in Progress in Optics (ed. Wolf, E.) Vol. 50, 137–184 (Elsevier, Amsterdam, 2007).

  129. 129.

    , & Performance of visible and mid-infrared scattering-type near-field optical microscopes. J. Microsc. 210, 311–314 (2003).

  130. 130.

    , , & Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Rev. Lett. 318, 131–136 (2000).

  131. 131.

    , , , & Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys. Rev. Lett. 92, 96101 (2004).

  132. 132.

    , & Nanosphere lithography: Self-assembled photonic and magnetic materials. Mater. Res. Soc. Symp. 636, D4.8 (2001).

Download references

Acknowledgements

This research was supported by the National Science Foundation (grants EEC-0647560, CHE-0414554, DMR-0520513 and BES-0507036), the National Cancer Institute (1 U54 CA119341-01), a Ruth L. Kirschstein National Research Service Award (5 F32 GM077020) to J.N.A., and a Ryan Fellowship to W.P.H.

Author information

Affiliations

  1. Chemistry Department, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA

    • Jeffrey N. Anker
    • , W. Paige Hall
    • , Olga Lyandres
    • , Nilam C. Shah
    • , Jing Zhao
    •  & Richard P. Van Duyne

Authors

  1. Search for Jeffrey N. Anker in:

  2. Search for W. Paige Hall in:

  3. Search for Olga Lyandres in:

  4. Search for Nilam C. Shah in:

  5. Search for Jing Zhao in:

  6. Search for Richard P. Van Duyne in:

Corresponding author

Correspondence to Richard P. Van Duyne.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nmat2162

Further reading