Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biosensing with plasmonic nanosensors

Abstract

Recent developments have greatly improved the sensitivity of optical sensors based on metal nanoparticle arrays and single nanoparticles. We introduce the localized surface plasmon resonance (LSPR) sensor and describe how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation. We then describe recent progress in three areas representing the most significant challenges: pushing sensitivity towards the single-molecule detection limit, combining LSPR with complementary molecular identification techniques such as surface-enhanced Raman spectroscopy, and practical development of sensors and instrumentation for routine use and high-throughput detection. This review highlights several exceptionally promising research directions and discusses how diverse applications of plasmonic nanoparticles can be integrated in the near future.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Effect of size and shape on LSPR extinction spectrum for silver nanoprisms and nanodiscs formed by nanosphere lithography.

© 2001 MRS

Figure 2: Single-nanoprism LSPR.

© 2003 ACS

Figure 3: Photothermal imaging of gold nanoparticles in a living cell.

© 2006 BIOPHYSICAL SOCIETY

Figure 4: Wavelength-dependent LSPR shifts induced by resonant molecules.

© 2006 ACS

Figure 5: Molecular plasmonic ruler.
Figure 6: Tuning the LSPR to maximize the SERS signal.

© 2005 ACS

Figure 7: Uniform biochip for multiplexed LSPR detection.

© 2006 ACS

Figure 8: The first in vivo SERS implantable glucose sensor.

© 2006 ACS

References

  1. 1

    Faraday, M. The Bakerian Lecture: experimental relations of gold (and other metals) to light. Phil. Trans. R. Soc. 147, 145–181 (1857).

    Google Scholar 

  2. 2

    Eustis, S. & El-Sayed, M. A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006).

    CAS  Google Scholar 

  3. 3

    Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    CAS  Google Scholar 

  4. 4

    Schultz, S., Smith, D. R., Mock, J. J. & Schultz, D. A. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc. Natl Acad. Sci. USA 97, 996–1001 (2000).

    CAS  Google Scholar 

  5. 5

    Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  6. 6

    Yguerabide, J. & Yguerabide, E. E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications. I. Theory. Anal. Biochem. 262, 137–156 (1998).

    CAS  Google Scholar 

  7. 7

    Nam, J. M., Thaxton, C. S. & Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).

    CAS  Google Scholar 

  8. 8

    Yonzon, C. R. et al. Towards advanced chemical and biological nanosensors — an overview. Talanta 67, 438–448 (2005).

    CAS  Google Scholar 

  9. 9

    Haes, A. J., Chang, L., Klein, W. L. & Van Duyne, R. P. Detection of a biomarker for Alzheimer's Disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc. 127, 2264–2271 (2005).

    CAS  Google Scholar 

  10. 10

    Dahlin, A. B., Tegenfeldt, J. O. & Hook, F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal. Chem. 78, 4416–4423 (2006).

    CAS  Google Scholar 

  11. 11

    McFarland, A. D. & Van Duyne, R. P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003).

    CAS  Google Scholar 

  12. 12

    Raschke, G. et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935–938 (2003).

    CAS  Google Scholar 

  13. 13

    Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    CAS  Google Scholar 

  14. 14

    Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interface Electrochem. 84, 1–20 (1977).

    CAS  Google Scholar 

  15. 15

    Haynes, C. L., Yonzon, C. R., Zhang, X. & Van Duyne, R. P. Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 36, 471–484 (2005).

    CAS  Google Scholar 

  16. 16

    Dieringer, J. A. et al. Surface enhanced Raman spectroscopy: New materials, concepts, characterization tools, and applications. Faraday Discuss. 132, 9–26 (2006).

    CAS  Google Scholar 

  17. 17

    Haller, K. L. et al. Spatially resolved surface enhanced second harmonic generation: Theoretical and experimental evidence for electromagnetic enhancement in the near infrared on a laser microfabricated Pt surface. J. Chem. Phys. 90, 1237–1252 (1989).

    CAS  Google Scholar 

  18. 18

    Yang, W. H., Hulteen, J. C., Schatz, G. C. & Van Duyne, R. P. A surface-enhanced hyper-Raman and surface-enhanced Raman scattering study of trans-1,2-bis(4-pyridyl)ethylene adsorbed onto silver film over nanosphere electrodes. Vibrational assignments: Experiment and theory. J. Chem. Phys. 104, 4313–4323 (1996).

    CAS  Google Scholar 

  19. 19

    Jensen, T. R., Van Duyne, R. P., Johnson, S. A. & Maroni, V. A. Surface-enhanced infrared spectroscopy: A comparison of metal island films with discrete and non-discrete surface plasmons. Appl. Spectrosc. 54, 371–377 (2000).

    CAS  Google Scholar 

  20. 20

    Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys 57, 783–826 (1985).

    CAS  Google Scholar 

  21. 21

    Aslan, K., Lakowicz, J. R., Szmacinski, H. & Geddes, C. D. Enhanced ratiometric pH sensing using SNAFL-2 on silver island films: Metal-enhanced fluorescence sensing. J. Fluoresc. 15, 37–40 (2005).

    CAS  Google Scholar 

  22. 22

    Chen, Y., Munechika, K. & Ginger, D. S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 7, 690–696 (2007).

    CAS  Google Scholar 

  23. 23

    Sundaramurthy, A. et al. Toward nanometer-scale optical photolithography: Utilizing the near-field of bowtie optical nanoantennas. Nano Lett. 6, 355–360 (2006).

    CAS  Google Scholar 

  24. 24

    Ozbay, E. Plasmonics: Merging photonics and electronics at nanoscale dimensions. Science 311, 189–193 (2006).

    CAS  Google Scholar 

  25. 25

    Atwater, H. The promise of plasmonics. Sci. Am. 296, 56–63 (2007).

    CAS  Google Scholar 

  26. 26

    Zhang, X. & Liu, Z. Superlenses to overcome the diffraction limit. Nature Mater. 7, 435–441 (2008).

    CAS  Google Scholar 

  27. 27

    Jensen, T. R., Duval Malinsky, M., Haynes, C. L. & Van Duyne, R. P. Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles. J. Phys. Chem. B 104, 10549–10556 (2000).

    CAS  Google Scholar 

  28. 28

    Jensen, T. R. et al. Nanosphere lithography: Effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles. J. Phys. Chem. B 103, 9846–9853 (1999).

    CAS  Google Scholar 

  29. 29

    Jin, R. et al. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425, 487–490 (2003).

    CAS  Google Scholar 

  30. 30

    Nikoobakht, B. & El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003).

    CAS  Google Scholar 

  31. 31

    Burda, C., Chen, X., Narayanan, R. & El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005).

    CAS  Google Scholar 

  32. 32

    Wang, H., Brandl, D. W., Le, F., Nordlander, P. & Halas, N. J. Nanorice: A hybrid plasmonic nanostructure. Nano Lett. 6, 827–832 (2006).

    CAS  Google Scholar 

  33. 33

    Haynes, C. L. & Van Duyne, R. P. Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611 (2001).

    CAS  Google Scholar 

  34. 34

    Haynes, C. L., McFarland, A. D., Smith, M. T., Hulteen, J. C. & Van Duyne, R. P. Angle-resolved nanosphere lithography: Manipulation of nanoparticle size, shape, and interparticle spacing. J. Phys. Chem. B 106, 1898–1902 (2002).

    CAS  Google Scholar 

  35. 35

    Hicks, E. M. et al. Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett. 5, 1065–1070 (2005).

    CAS  Google Scholar 

  36. 36

    Barbillon, G. et al. Electron beam lithography designed chemical nanosensors based on localized surface plasmon resonance. Surf. Sci. 601, 5057–5061 (2007).

    CAS  Google Scholar 

  37. 37

    Chan, G. H., Zhao, J., Hicks, E. M., Schatz, G. C. & Van Duyne, R. P. Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography. Nano Lett. 7, 1947–1952 (2007).

    CAS  Google Scholar 

  38. 38

    Lee, K. J., Nallathamby, P. D., Browning, L. M., Osgood, C. J. & Xu, X. H. N. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1, 133–143 (2007).

    CAS  Google Scholar 

  39. 39

    Xu, X. H. N., Brownlow, W. J., Kyriacou, S. V., Wan, Q. & Viola, J. J. Real-time probing of membrane transport in living microbial cells using single nanoparticle optics and living cell imaging. Biochemistry 43, 10400–10413 (2004).

    CAS  Google Scholar 

  40. 40

    Lin, A. et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 3, 33–40 (2004).

    Google Scholar 

  41. 41

    Stuart, D. A., Haes, A. J., McFarland, A. D., Nie, S. & Van Duyne, R. P. Refractive-index-sensitive, plasmon-resonant-scattering, and surface-enhanced Raman-scattering nanoparticles and arrays as biological sensing platforms. Proc. SPIE – Int. Soc. Opt. Eng. 5327, 60–73 (2004).

    CAS  Google Scholar 

  42. 42

    Yonzon, C. R. et al. A comparative analysis of localized and propagating surface plasmon resonance sensors: The binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J. Am. Chem. Soc. 126, 12669–12676 (2004).

    CAS  Google Scholar 

  43. 43

    Lacor, P. N. et al. Abeta oligomer-induced aberrations in synapse composition, shape and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J. Neurosci. 27, 796–807 (2007).

    CAS  Google Scholar 

  44. 44

    Gong, Y. et al. Alzheimer's Disease-affected brain: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl Acad. Sci. USA 100, 10417–10422 (2003).

    CAS  Google Scholar 

  45. 45

    Hardy, J. & Selkoe, D. J. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science 297, 353–356 (2002).

    CAS  Google Scholar 

  46. 46

    Georganopoulou, D. G. et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer's disease. Proc. Natl Acad. Sci. USA 102, 2273–2276 (2005).

    CAS  Google Scholar 

  47. 47

    Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    CAS  Google Scholar 

  48. 48

    Yildiz, A. et al. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    CAS  Google Scholar 

  49. 49

    Hall W. P. et al. A calcium-modulated plasmonic switch. J. Am. Chem. Soc. 130, 5836–5837 (2008).

    CAS  Google Scholar 

  50. 50

    Haes, A. J., Zou, S., Schatz, G. C. & Van Duyne, R. P. Nanoscale optical biosensor: Short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 108, 6961–6968 (2004).

    CAS  Google Scholar 

  51. 51

    Hicks, E. M. et al. Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithographpy. J. Phys. Chem. B 109, 22351–22358 (2005).

    CAS  Google Scholar 

  52. 52

    Henzie, J., Lee, M. H. & Odom, T. W. Multiscale patterning of plasmonic metamaterials. Nature Nanotech. 2, 549–554 (2007).

    CAS  Google Scholar 

  53. 53

    Van Duyne, R. P., Haes, A. J. & McFarland, A. D. Nanoparticle optics: Sensing with nanoparticle arrays and single nanoparticles. Proc. SPIE 5223, 197–207 (2003).

    CAS  Google Scholar 

  54. 54

    Lasne, D. et al. Single nanoparticle photothermal tracking (SNaPT) of 5-nm gold beads in live cells. Biophys. J. 91, 4598–4604 (2006).

    CAS  Google Scholar 

  55. 55

    Shotton, D. M. Confocal scanning optical microscopy and its applications for biological specimens. J. Cell Sci. 94, 175–206 (1989).

    Google Scholar 

  56. 56

    Aaron, J. et al. Plasmon resonance coupling of metal nanoparticles for molecular imaging of carcinogenesis in vivo. J. Biomed. Optics 12, 034007- (2007).

    Google Scholar 

  57. 57

    Xu, X. H. N., Chen, J., Jeffers, R. & Kyriacou, S. Direct measurement of sizes and dynamics of single living membrane transporters using nano-optics. Nano Lett. 2, 175–182 (2002).

    CAS  Google Scholar 

  58. 58

    Dijk, M. A. et al. Absorption and scattering microscopy of single metal nanoparticles. J. Phys. Chem. Chem. Phys. 8, 3486–3495 (2006).

    Google Scholar 

  59. 59

    Geerts, H., de Brabander, M. & Nuydens, R. Nanovid microscopy. Nature 351, 765–766 (1991).

    CAS  Google Scholar 

  60. 60

    De Brabander, M., Nuydens, R., Geuens, G., Moeremans, M. & De Mey, J. The use of submicroscopic gold particles combined with video contrast enhancement as a simple molecular probe for the living cell. Cell Motil. Cytoskel. 6, 105–113 (1986).

    CAS  Google Scholar 

  61. 61

    Link, S. & El-Sayed, M. A. Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409–453 (2000).

    CAS  Google Scholar 

  62. 62

    Agarwal, A. et al. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 102, 064701 (2007).

    Google Scholar 

  63. 63

    Mallidi, S., Larson, T., Aaron, J., Sokolov, K. & Emelianov, S. Molecular specific optoacoustic imaging with plasmonic nanoparticles. Opt. Express 15, 6583–6588 (2007).

    CAS  Google Scholar 

  64. 64

    El-Sayed, I. H., Huang, X. & El-Sayed, M. A. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett. 239, 129–135 (2006).

    CAS  Google Scholar 

  65. 65

    Larson, T. A., Bankson, J., Aaron, J. & Sokolov, K. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells. Nanotechnology 18, 1–8 (2007).

    Google Scholar 

  66. 66

    Aaron, J. S. et al. Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles. Opt. Express 14, 12930–12943 (2006).

    CAS  Google Scholar 

  67. 67

    Liu, G. L., Lu, Y., Kim, J., Doll, J. C. & Lee, L. P. Magnetic nanocrescents as controllable surface-enhanced Raman scattering nanoprobes for biomedical imaging. Adv. Mater. 17, 2683–2688 (2005).

    CAS  Google Scholar 

  68. 68

    Haes, A. J., Zou, S., Schatz, G. C. & Van Duyne, R. P. Nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 108, 109–116 (2004).

    CAS  Google Scholar 

  69. 69

    Whitney, A. V. et al. Localized surface plasmon resonance nanosensor: A high-resolution distance-dependence study using atomic layer deposition. J. Phys. Chem. B 109, 20522–20528 (2005).

    CAS  Google Scholar 

  70. 70

    Haes, A. J., Zou, S., Zhao, J., Schatz, G. C. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy near molecular resonances. J. Am. Chem. Soc. 128, 10905–10914 (2006).

    CAS  Google Scholar 

  71. 71

    Zhao, J. et al. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. J. Am. Chem. Soc. 129, 7647–7656 (2007).

    CAS  Google Scholar 

  72. 72

    Zhao, J. et al. Resonance surface plasmon spectroscopy: Low molecular weight substrate binding to cytochrome P450. J. Am. Chem. Soc. 128, 11004–11005 (2006).

    CAS  Google Scholar 

  73. 73

    Reinhard, B. M., Sheikholeslami, S., Mastroianni, A., Alivisatos, A. P. & Liphardt, J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc. Natl Acad. Sci. USA 104, 2667–2672 (2007).

    CAS  Google Scholar 

  74. 74

    Sonnichsen, C., Reinhard, B. M., Liphardt, J. & Alivisatos, A. P. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nature Biotechnol. 23, 741–745 (2005).

    Google Scholar 

  75. 75

    Lipscomb, J. D. & Gunsalus, I. C. Structural aspects of active-site of cytochrome P-450Cam. Drug Metab. Dispos. 1, 1–5 (1973).

    CAS  Google Scholar 

  76. 76

    Sligar, S. G. Coupling of spin, substrate, and redox equilibria in cytochrome P450. Biochemistry 15, 5399–5406 (1976).

    CAS  Google Scholar 

  77. 77

    Ingber, D. E. Cellular mechanotransduction: putting all the pieces together again. FASEB J. 20, 811–827 (2006).

    CAS  Google Scholar 

  78. 78

    Su, K. H. et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003).

    CAS  Google Scholar 

  79. 79

    Jain, P. K., Huang, W. & El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 7, 2080–2088 (2007).

    CAS  Google Scholar 

  80. 80

    Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137–141 (2003).

    CAS  Google Scholar 

  81. 81

    Jensen, T. R., Schatz, G. C. & Van Duyne, R. P. Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by UV-vis extinction spectroscopy and electrodynamic modeling. J. Phys. Chem. B 103, 2394–2401 (1999).

    CAS  Google Scholar 

  82. 82

    Fromm, D. P., Sundaramurthy, A., Schuck, P. J., Kino, G. & Moerner, W. E. Gap-dependent optical coupling of single 'bowtie' nanoantennas resonant in the visible. Nano Lett. 4, 957–961 (2004).

    CAS  Google Scholar 

  83. 83

    Reinhard, B. M., Siu, M., Agarwal, H., Alivisatos, A. P. & Liphardt, J. Calibration of dynamic molecular rulers based on plasmon coupling between gold nanoparticles. Nano Lett. 5, 2246–2252 (2005).

    CAS  Google Scholar 

  84. 84

    Liu, G. L. et al. A nanoplasmonic molecular ruler for measuring nuclease activity and DNA footprinting. Nature Nanotech. 1, 47–52 (2006).

    CAS  Google Scholar 

  85. 85

    McFarland, A. D., Young, M. A., Dieringer, J. A. & Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 109, 11279–11285 (2005).

    CAS  Google Scholar 

  86. 86

    Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    CAS  Google Scholar 

  87. 87

    Dieringer, J. A., Ii, R. B. L., Scheidt, K. A. & Van Duyne, R. P. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 129, 16249–16256 (2007).

    CAS  Google Scholar 

  88. 88

    Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    CAS  Google Scholar 

  89. 89

    Van Duyne, R. P. in Chemical and Biochemical Applications of Lasers (ed. Moore, C. B.) Vol. 4, 101–184 (Academic, New York, 1979).

    Google Scholar 

  90. 90

    Zhao, L., Jensen, L. & Schatz, G. C. Pyridine-Ag 20 cluster: A model system for studying surface-enhanced Raman scattering. J. Am. Chem. Soc. 128, 2911–2919 (2006).

    CAS  Google Scholar 

  91. 91

    Zou, S. & Schatz, G. C. Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chem. Rev. Lett. 403, 62–67 (2005).

    CAS  Google Scholar 

  92. 92

    Dick, L. A., McFarland, A. D., Haynes, C. L. & Van Duyne, R. P. Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 106, 853–860 (2002).

    CAS  Google Scholar 

  93. 93

    Zhang, X., Young, M. A., Lyandres, O. & Van Duyne, R. P. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 127, 4484–4489 (2005).

    CAS  Google Scholar 

  94. 94

    Zhang, X., Zhao, J., Whitney, A. V., Elam, J. W. & Van Duyne, R. P. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 128, 10304–10309 (2006).

    CAS  Google Scholar 

  95. 95

    Yonzon, C. R., Zhang, X. & Van Duyne, R. P. Localized surface plasmon resonance immunoassay and verification using surface-enhanced Raman spectroscopy. Proc. SPIE – Int. Soc. Opt. Eng. 5224, 78–85 (2003).

    CAS  Google Scholar 

  96. 96

    Owega, S., Lai, E. P. C. & Mullett, W. M. Laser desorption ionization of gramicidin S on thin silver films with matrix isolation in surface plasmon resonance excitation. J. Photochem. Photobiol. A 119, 123–135 (1998).

    CAS  Google Scholar 

  97. 97

    Owega, S., Lai, E. P. C. & Bawagan, A. D. O. Surface plasmon resonance-laser desorption/ionization-time-of-flight mass spectrometry. Anal. Chem. 70, 2360–2365 (1998).

    CAS  Google Scholar 

  98. 98

    Lee, I., Callcott, T. A. & Arakawa, E. T. Laser-induced surface-plasmon desorption of dye molecules from aluminum films. Anal. Chem. 64, 476–478 (1992).

    CAS  Google Scholar 

  99. 99

    Chen, L. C., Ueda, T., Sagisaka, M., Hori, H. & Hiraoka, K. Visible laser desorption/ionization mass spectrometry using gold nanorods. J. Phys. Chem. C 111, 2409–2415 (2007).

    CAS  Google Scholar 

  100. 100

    Chen, L. C., Yonehama, J., Ueda, T., Hori, H. & Hiraoka, K. Visible-laser desorption/ionization on gold nanostructures. J. Mass Spectrom. 42, 346–353 (2007).

    CAS  Google Scholar 

  101. 101

    Altelaar, A. F. M. et al. Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal. Chem. 78, 734–742 (2006).

    CAS  Google Scholar 

  102. 102

    McLean, J. A., Stumpo, K. A. & Russell, D. H. Size-selected (2–10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides. J. Am. Chem. Soc. 127, 5304–5305 (2005).

    CAS  Google Scholar 

  103. 103

    Huang, Y. F. & Chang, H. T. Nile Red-adsorbed gold nanoparticle matrixes for determining aminothiols through surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 78, 1485–1493 (2006).

    CAS  Google Scholar 

  104. 104

    Xu, X. et al. Size and shape separation of gold nanoparticles with preparative gel electrophoresis. J. Chromatogr. A 1167, 35–41 (2007).

    CAS  Google Scholar 

  105. 105

    Qin, W. J. & Yung, L. Y. L. Nanoparticle-DNA conjugates bearing a specific number of short DNA strands by enzymatic manipulation of nanoparticle-bound DNA. Langmuir 21, 11330–11334 (2005).

    CAS  Google Scholar 

  106. 106

    Duval Malinsky, M., Kelly, L., Schatz, G. C. & Van Duyne, R. P. Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 123, 1471–1482 (2001).

    Google Scholar 

  107. 107

    Huang, W., Qian, W. & El-Sayed, M. A. Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses. J. Appl. Phys. 98, 114301 (2005).

    Google Scholar 

  108. 108

    Whitney, A. V., Elam, J. W., Stair, P. C. & Van Duyne, R. P. Toward a thermally robust operando surface-enhanced Raman spectroscopy substrate. J. Phys. Chem. C 111, 16827–16832 (2007).

    CAS  Google Scholar 

  109. 109

    Von Raben, K. U., Chang, R. K., Laube, B. L. & Barber, P. W. Wavelength dependence of surface-enhanced Raman scattering from Ag colloids with adsorbed CN complexes, SO32−, and pyridine. J. Phys. Chem. B 88, 5290–5296 (1984).

    CAS  Google Scholar 

  110. 110

    Fornasiero, D. & Grieser, F. Analysis of the visible absorption and SERS excitation spectra of silver sols. J. Chem. Phys. 87, 3213–3217 (1987).

    CAS  Google Scholar 

  111. 111

    Carron, K., Peitersen, L. & Lewis, M. Octadecylthiol-modified surface-enhanced Raman-spectroscopy substrates — a new method for the detection of aromatic-compounds. Environ. Sci. Technol. 26, 1950–1954 (1992).

    CAS  Google Scholar 

  112. 112

    Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    CAS  Google Scholar 

  113. 113

    Han, J. W. Temporal stability of thiophene self-assembled monolayers on Au (111). Mol. Cryst. Liq. Cryst. 464, 205–209 (2007).

    Google Scholar 

  114. 114

    Jeong, Y., Lee, C., Ito, E., Hara, M. & Noh, J. Time-dependent phase transition of self-assembled monolayers formed by thioacetyl-terminated tolanes on Au (111). Jpn. J. Appl. Phys. 45, 5906–5910 (2006).

    CAS  Google Scholar 

  115. 115

    Zhang, Z. S. et al. Heat capacity measurements of two-dimensional self-assembled hexadecanethiol monolayers on polycrystalline gold. Appl. Phys. Lett. 84, 5198–5200 (2004).

    CAS  Google Scholar 

  116. 116

    Lewis, M., Tarlov, M. & Carron, K. Study of the photooxidation process of self-assembled alkanethiol monolayers. J. Am. Chem. Soc. 117, 9574–9575 (1995).

    CAS  Google Scholar 

  117. 117

    Schoenfisch, M. H. & Pemberton, J. E. Air stability of alkanethiol self-assembled monolayers on silver and gold surfaces J. Am. Chem. Soc. 120, 4502–4513 (1998).

    CAS  Google Scholar 

  118. 118

    Thompson, W. R. & Pemberton, J. E. Characterization of octadecylsilane and stearic acid layers on Al2O3 surfaces by Raman spectroscopy. Langmuir 11, 1720–1725 (1995).

    CAS  Google Scholar 

  119. 119

    Arkles, B. in Silicon Compounds: Register and Review 5th edn (eds Anderson, R., Larson, G. L. & Smith, C.) 59–60 (Huls America, Piscataway, New Jersey, 1991).

    Google Scholar 

  120. 120

    Endo, T. et al. Multiple label-free detection of antigen-antibody reaction using localized surface plasmon resonance-based core-shell structured nanoparticle layer nanochip. Anal. Chem. 78, 6465–6475 (2006).

    CAS  Google Scholar 

  121. 121

    Endo, T., Kerman, K., Nagatani, N., Takamura, Y. & Tamiya, E. Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal. Chem. 77, 6976–6984 (2005).

    CAS  Google Scholar 

  122. 122

    Lyandres, O. et al. Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Anal. Chem. 77, 6134–6139 (2005).

    CAS  Google Scholar 

  123. 123

    Stuart, D. A. et al. In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal. Chem. 78, 7211–7215 (2006).

    CAS  Google Scholar 

  124. 124

    Shah, N. C., Lyandres, O., Walsh, J. T., Glucksberg, M. R. & Van Duyne, R. P. Lactate and sequential lactate-glucose sensing using surface-enhanced Raman spectroscopy. Anal. Chem. 79, 6927–6932 (2007).

    CAS  Google Scholar 

  125. 125

    Liu, G., Doll, J. & Lee, L. High-speed multispectral imaging of nanoplasmonic array. Opt. Express 13, 8520–8525 (2005).

    Google Scholar 

  126. 126

    Liu, G. L., Long, Y. T., Choi, Y., Kang, T. & Lee, L. P. Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer. Nature Methods 4, 1015–1017 (2007).

    CAS  Google Scholar 

  127. 127

    Mock, J. J. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 116, 6755–6759 (2002).

    CAS  Google Scholar 

  128. 128

    Novotny, L. in Progress in Optics (ed. Wolf, E.) Vol. 50, 137–184 (Elsevier, Amsterdam, 2007).

    Google Scholar 

  129. 129

    Taubner, T., Hillenbrand, R. & Keilmann, F. Performance of visible and mid-infrared scattering-type near-field optical microscopes. J. Microsc. 210, 311–314 (2003).

    CAS  Google Scholar 

  130. 130

    Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Rev. Lett. 318, 131–136 (2000).

    Google Scholar 

  131. 131

    Pettinger, B., Ren, B., Picardi, G., Schuster, R. & Ertl, G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys. Rev. Lett. 92, 96101 (2004).

    Google Scholar 

  132. 132

    Haes, J., Haynes, C. L. & Van Duyne, R. P. Nanosphere lithography: Self-assembled photonic and magnetic materials. Mater. Res. Soc. Symp. 636, D4.8 (2001).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation (grants EEC-0647560, CHE-0414554, DMR-0520513 and BES-0507036), the National Cancer Institute (1 U54 CA119341-01), a Ruth L. Kirschstein National Research Service Award (5 F32 GM077020) to J.N.A., and a Ryan Fellowship to W.P.H.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard P. Van Duyne.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anker, J., Hall, W., Lyandres, O. et al. Biosensing with plasmonic nanosensors. Nature Mater 7, 442–453 (2008). https://doi.org/10.1038/nmat2162

Download citation

Further reading

Search

Quick links