Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrostatic electrochemistry at insulators

Abstract

The identity of charges generated by contact electrification on dielectrics has remained unknown for centuries and the precise determination of the charge density is also a long-standing challenge. Here, electrostatic charges on Teflon (polytetrafluoroethylene) produced by rubbing with Lucite (polymethylmethacrylate) were directly identified as electrons rather than ions by electrochemical (redox) experiments with charged Teflon used as a single electrode in solution causing various chemical reactions: pH increases; hydrogen formation; metal deposition; Fe(CN)63− reduction; and chemiluminescence in the system of Teflon(-)/Ru(bpy)32+/S2O82− (analogous to electrogenerated chemiluminescence). Moreover, copper deposition could be amplified by depositing Pd first in a predetermined pattern, followed by electroless deposition to produce Cu lines. This process could be potentially important for microelectronic and other applications because Teflon has desirable properties including a low dielectric constant and good thermal stability. Charge density was determined using Faraday’s law and the significance of electron transfer processes on charged polymers and potentially other insulators have been demonstrated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cu deposited on charged Teflon.
Figure 2: Cu plated on charged Teflon.
Figure 3: Fe(CN)63− was reduced by charged Teflon to Fe(CN)64−.
Figure 4: Charged-Teflon-generated chemiluminescence.
Figure 5: Charged-Teflon-produced chemiluminescence.

Similar content being viewed by others

References

  1. Jonassen, N. Electrostatics 2nd edn (Kluwer Academic, Norwell, 2002).

    Google Scholar 

  2. Bard, A. J. & Faulkner, L. R. Electrochemical Methods, Fundamentals and Applications 2nd edn (Wiley, New York, 2001).

    Google Scholar 

  3. Gilbert, W. De Magnete (Chiswick, London, 1600).

    Google Scholar 

  4. Harper, W. R. The Volta effect as a cause of static electrification. Proc. R. Soc. A 205, 83–103 (1951).

    CAS  Google Scholar 

  5. Harper, W. R. Static Electrification 3–10 (Inst. Phys. Conf. Ser., Vol. 4, Adlard & Son, Dorking, 1967).

    Google Scholar 

  6. Henry, P. S. H. Survey of generation and dissipation of static electricity. Br. J. Appl. Phys. 4 (suppl. 2), S6–S11 (1953).

    Article  Google Scholar 

  7. Davies, D. K. Static Electrification 29–36 (Inst. Phys. Conf. Ser., Vol. 4, Adlard & Son, Dorking, 1967).

    Google Scholar 

  8. Davies, D. K. Charge generation on dielectric surfaces. Br. J. Appl. Phys. 2, 1533–1537 (1969).

    Google Scholar 

  9. Duke, C. B. & Fabish, T. J. Contact electrification of polymers: A quantitative model. J. Appl. Phys. 49, 315–321 (1978).

    Article  CAS  Google Scholar 

  10. Lowell, J. & Rose-Innes, A. C. Contact electrification. Adv. Phys. 29, 947–1023 (1980).

    Article  CAS  Google Scholar 

  11. Diaz, A. F. & Fenzel-Alexander, D. An ion transfer model for contact charging. Langmuir 9, 1009–1015 (1993).

    Article  CAS  Google Scholar 

  12. Diaz, A. F., Fenzel-Alexander, D., Wollmann, D. & Barker, J. A. Importance of dissociated ions in contact charging. Langmuir 8, 2698–2706 (1992).

    Article  CAS  Google Scholar 

  13. Folan, L. M. et al. Electrometer for repeated charge exchange measurements between a microparticle and a surface: Effect of water adsorption. J. Electrostat. 25, 155–163 (1990).

    Article  CAS  Google Scholar 

  14. Wiles, J. A. et al. A tool for studying contact electrification in systems comprising metals and insulating polymers. Anal. Chem. 75, 4859–4867 (2003).

    Article  CAS  Google Scholar 

  15. McCarty, L. S. & Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: Contact electrification of ionic electrets. Angew. Chem. Int. Ed. 47, 2188–2207 (2008).

    Article  CAS  Google Scholar 

  16. Diaz, A. F. & Guay, J. Contact charging of organic materials: Ion vs. electron transfer. IBM J. Res. Dev. 37, 249–259 (1993).

    Article  CAS  Google Scholar 

  17. Diaz, A. F. & Felix-Navarro, R. M. A semi-quantitative tribo-electric series for polymeric materials: The influence of chemical structure and properties. J. Electrostat. 62, 277–290 (2004).

    Article  CAS  Google Scholar 

  18. Sessler, G. M., Figueiredo, M. T. & Ferreira, G. F. L. Models of charge transport in electron-beam irradiated insulators. IEEE Trans. Dielectr. Electr. Insulat. 11, 192–202 (2004).

    Article  CAS  Google Scholar 

  19. Cottrell, G. A. The measurement of true contact charge density using soft rubber. J. Phys. D 11, 681–687 (1978).

    Article  CAS  Google Scholar 

  20. Medley, J. A. The electrostatic charging of some polymers by mercury. Br. J. Appl. Phys. 4 (suppl. 2), S28–S30 (1953).

    Article  Google Scholar 

  21. Horn, R. G. & Smith, D. T. Contact electrification and adhesion between dissimilar materials. Science 256, 362–364 (1992).

    Article  CAS  Google Scholar 

  22. Mance, A. M., Waldo, R. A. & Dow, A. A. Interactions of electroless catalysts with plasma-oxidized surface of polystyrene-based resins. J. Electrochem. Soc. 136, 1667–1671 (1989).

    Article  CAS  Google Scholar 

  23. The National Technology Roadmap for Semiconductors: Technology Needs, SIA, Semiconductor Industry Association, 101–105 (1997).

  24. Bard, A. J. (ed.) Electrogenerated Chemiluminescence (Marcel Dekker, New York, 2004).

  25. White, H. S. & Bard, A J. Electrogenerated chemiluminescence. 41. Electrogenerated chemiluminescence and chemiluminescence of the tris(2,2′-bipyridine)ruthenium(2+)-peroxydisulfate(2) system in acetonitrile-water solutions. J. Am. Chem. Soc. 25, 6891–6895 (1982).

    Article  Google Scholar 

  26. Bolletta, F., Ciano, M., Balzani, V. & Serpone, N. Polypyridine transition-metal complexes as light-emission sensitizers in the electrochemical reduction of the persulfate ion. Inorg. Chim. Acta 62, 207–213 (1982).

    Article  CAS  Google Scholar 

  27. Miao, W. & Choi, J.-P. in Electrogenerated Chemiluminescence (ed. Bard, A. J.) Ch. 5 (Marcel Dekker, New York, 2004).

    Google Scholar 

  28. Ege, D., Becker, W. G. & Bard, A. J. Electrogenerated chemiluminescent determination of tris(2,2′-bipyridine)ruthenium ion (Ru(bpy)32+) at low levels. Anal. Chem. 56, 2413–2417 (1984).

    Article  CAS  Google Scholar 

  29. Bolletta, F., Juris, A., Maestri, M. & Sandrini, D. Quantum yield of formation of the lowest excited state of tris(bipyridine)ruthenium(II) Ru(bpy)32+ and tris(phenanthroline)ruthenium(II) Ru(phen)32+. Inorg. Chim. Acta 44, L175–L176 (1980).

    Article  CAS  Google Scholar 

  30. Liu, C.-Y. & Bard, A. J. Electrochemistry and electrogenerated chemiluminescence with a single faradaic electrode. Anal. Chem. 77, 5339–5343 (2005).

    Article  CAS  Google Scholar 

  31. Debad, J. D., Glezer, E. N., Wohlstadter, J., Sigal, G. B. & Leland, J. K. in Electrogenerated Chemiluminescence (ed. Bard, A. J.) 359–396 (Marcel Dekker, New York, 2004).

    Google Scholar 

  32. Heinicke, G. Tribochemistry (Akademie-Verlag, Berlin, 1984).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (CHE-0451494) and the Robert A. Welch Foundation. We thank W. Zhao for the determination of D2 with a UHV mass spectrometer in the Center for Materials Chemistry and H. Finley-Jones and A. Rowland for inductively coupled plasma mass spectrometer measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen J. Bard.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Bard, A. Electrostatic electrochemistry at insulators. Nature Mater 7, 505–509 (2008). https://doi.org/10.1038/nmat2160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing