Progress Article | Published:

Superlenses to overcome the diffraction limit

Nature Materials volume 7, pages 435441 (2008) | Download Citation

Subjects

Abstract

The imaging resolution of conventional lenses is limited by diffraction. Artificially engineered metamaterials now offer the possibility of building a superlens that overcomes this limit. We review the physics of such superlenses and the theoretical and experimental progress in this rapidly developing field. Superlenses have great potential in applications such as biomedical imaging, optical lithography and data storage.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi-USSR 10, 509–514 (1968).

  2. 2.

    et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

  3. 3.

    et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

  4. 4.

    , & Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

  5. 5.

    Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

  6. 6.

    et al. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2003).

  7. 7.

    , & Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

  8. 8.

    et al. Transmission properties of composite metamaterials in free space. Appl. Phys. Lett. 81, 120–122 (2002).

  9. 9.

    et al. Experimental verification and simulation of negative index of refraction using Snell's Law. Phys. Rev. Lett. 90, 107401 (2003).

  10. 10.

    , & Origin of dissipative losses in negative index of refraction materials. Appl. Phys. Lett. 82, 2356–2358 (2003).

  11. 11.

    Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

  12. 12.

    et al. Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82, 1506–1508 (2003).

  13. 13.

    & Imaging properties of a metamaterial superlens. Appl. Phys. Lett. 82, 161–163 (2003).

  14. 14.

    Optimizing the superlens: manipulating geometry to enhance the resolution. Appl. Phys. Lett. 87, 231113 (2005).

  15. 15.

    & Imperfect perfect lens. Nano Lett. 5, 339–343 (2005).

  16. 16.

    et al. Rapid growth of evanescent wave with a silver superlens. Appl. Phys. Lett. 83, 5184–5186 (2003).

  17. 17.

    , , & Regenerating evanescent waves from a silver superlens. Opt. Express 11, 682–687 (2003).

  18. 18.

    & Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004).

  19. 19.

    & Cummer S. A. Direct measurement of evanescent wave enhancement inside passive metamaterials. Phys. Rev. E. 73, 016617 (2006).

  20. 20.

    , & Experimental observations of a left-handed material that obeys Snell's law. Phys. Rev. Lett. 90, 137401 (2003).

  21. 21.

    & Near-perfect imaging in a focusing system based on a left-handed-material plate. Phys. Rev. Lett. 92, 077401 (2004).

  22. 22.

    et al. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

  23. 23.

    et al. Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255 (2005).

  24. 24.

    & Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005).

  25. 25.

    et al. Imaging, compression and Poynting vector streamlines for negative permittivity materials. Electron. Lett. 37, 1243–1244 (2001).

  26. 26.

    et al. Imaging the near field. J. Mod. Opt. 50, 1419–1430 (2003).

  27. 27.

    & Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys. Rev. B 73, 113110 (2006).

  28. 28.

    , & Directed subwavelength imaging using a layered metal–dielectric system. Phys. Rev. B 74, 115116 (2006).

  29. 29.

    et al. Near-field microscopy through a SiC superlens. Science 313, 1595 (2006).

  30. 30.

    Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62, 10696–10705 (2000).

  31. 31.

    et al. All-angle negative refraction without negative effective index. Phys. Rev. B 65, 201104 (2002).

  32. 32.

    et al. Subwavelength imaging in photonic crystal. Phys. Rev. B 68, 045115 (2003).

  33. 33.

    & Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability. Solid State Commun. 129, 643–649 (2004).

  34. 34.

    & Negative refraction and left-handed behavior in two-dimensional photonic crystals. Phys. Rev. B 67, 235107 (2003).

  35. 35.

    et al. Negative refraction by photonic crystals. Nature 423, 604–605 (2003).

  36. 36.

    et al. Imaging by flat lens using negative refraction. Nature 426, 404 (2003).

  37. 37.

    et al. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett. 91, 207401 (2003).

  38. 38.

    & Evaluation of lensing in photonic crystal slabs exhibiting negative refraction. Phys. Rev. B. 68, 245110 (2003).

  39. 39.

    & Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonance. Phys. Rev. Lett. 93, 243902 (2004).

  40. 40.

    et al. Wave front evolution of negatively refracted waves in a photonic crystal. Appl. Phys. Lett. 90, 041113 (2007).

  41. 41.

    & Near-sighted superlens. Opt. Lett. 30, 75–77 (2005).

  42. 42.

    et al. Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit. J. Opt. Soc. Am. B 23, 2383–2392 (2006).

  43. 43.

    et al. Far-field optical superlens. Nano Lett. 7, 403–408 (2007).

  44. 44.

    et al. Experimental studies of far-field superlens for sub-diffractional optical imaging. Opt. Express 15, 6947–6954 (2007).

  45. 45.

    et al. Tuning the far-field superlens: from UV to visible. Opt. Express 15, 7095–7102 (2007).

  46. 46.

    , , & Two-dimensional imaging by far-field superlens at visible wavelengths. Nano Lett. 7, 3360–3365 (2007).

  47. 47.

    , & Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).

  48. 48.

    & Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006).

  49. 49.

    et al. Development of optical hyperlens for imaging below the diffraction limit. Opt. Express. 15, 15886–15891 (2007).

  50. 50.

    & Near-field lenses in two dimensions. J. Phys. Condens. Matter 14, 8463–8479 (2002).

  51. 51.

    Perfect cylindrical lenses. Opt. Express 11, 755–760 (2003).

  52. 52.

    et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

  53. 53.

    , & Magnifying superlens in the visible frequency range. Science 315, 1699–1701 (2007).

  54. 54.

    , & Comment on “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons”. Phys. Rev. Lett. 98, 209730 (2007).

  55. 55.

    et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

  56. 56.

    et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).

  57. 57.

    et al. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006).

  58. 58.

    et al. Negative-index metamaterial at 780 nm wavelength. Opt. Lett. 32, 53–55 (2007).

  59. 59.

    et al. Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005).

  60. 60.

    Negative refractive index in artificial metamaterials. Opt. Lett. 31, 2483–2485 (2006).

  61. 61.

    et al. Locally resonant sonic materials. Science 289, 1734–1736 (2000).

  62. 62.

    et al. Ultrasonic metamaterials with negative modulus. Nature Mater. 5, 452–456 (2006).

  63. 63.

    & Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004).

  64. 64.

    et al. Focusing of sound in a 3D phononic crystal. Phys. Rev. Lett. 93, 024301 (2004).

  65. 65.

    et al. Surface resonant states and superlensing in acoustic metamaterials. Phys. Rev. B 75, 195447 (2007).

  66. 66.

    et al. Negative birefraction of acoustic waves in a sonic crystal. Nature Mater. 6, 744–748 (2007).

  67. 67.

    Collimation of sound assisted by acoustic surface waves. Nature Phys. 3, 851–852 (2007).

  68. 68.

    et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

Download references

Acknowledgements

This work was supported by NSF NSEC award DMI-0327077, ARO MURI award 50432-PH-MUR and AFOSR MURI award FA9550-04-1-0434.

Author information

Affiliations

  1. 5130 Etcheverry Hall, Nanoscale Science and Engineering Center, University of California, Berkeley, California 94720–1740, USA  xiang@berkeley.edu

    • Xiang Zhang
    •  & Zhaowei Liu

Authors

  1. Search for Xiang Zhang in:

  2. Search for Zhaowei Liu in:

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nmat2141

Further reading