Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organic ferroelectrics

Abstract

Ferroelectricity results from one of the most representative phase transitions in solids, and is widely used for technical applications. However, observations of ferroelectricity in organic solids have until recently been limited to well-known polymer ferroelectrics and only a few low-molecular-mass compounds. Whereas the traditional use of dipolar molecules has hardly succeeded in producing ferroelectricity in general, here we review advances in the synthesis of new organic materials with promising ferroelectric properties near room temperature, using design principles in analogy to inorganic compounds. These materials are based on non-covalent molecules formed by two or more components, in which ferroelectricity arises either from molecular displacements or from the collective transfer of electrons or protons. The principle of using multi-component molecular compounds leads to a much broader design flexibility and may therefore facilitate the development of future functional organics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conventional designs of ferroelectric materials and the origin of their dipole moment p or polarization P (open arrows).
Figure 2: Neutral–ionic phase transitions for TTF-CA and TTF-QBrCl3 crystals.
Figure 3: Deprotonation/protonation processes and acidic dissociation constants of acid/base molecules.
Figure 4: Crystal structure of Phz-H2xa cocrystals.
Figure 5: Temperature variation of dielectric properties of Phz-H2xa cocrystals.
Figure 6: Structure of [H-55dmbp][Hia] cocrystal in the ferroelectric phase.
Figure 7: Dielectric properties of the [H-55dmbp][Hia] cocrystal.

Similar content being viewed by others

References

  1. Lines, M. E. & Glass, A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford Univ. Press, New York, 1977).

    Google Scholar 

  2. Valasek, J. Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921).

    Article  CAS  Google Scholar 

  3. Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).

    Article  CAS  Google Scholar 

  4. Hoshino, S., Mitsui, T., Jona, F. & Pepinsky, R. Dielectric and thermal study of tri-glycine sulfate and tri-glycine fluoberyllate. Phys. Rev. 107, 1255–1258 (1957).

    Article  CAS  Google Scholar 

  5. Furukawa, T. Ferroelectric properties of vinylidene fluoride copolymers. Phase Trans. 18, 143–211 (1989).

    Article  CAS  Google Scholar 

  6. Sessler, G. M. Piezoelectricity in polyvinylidenefluoride. J. Acoust. Soc. Am. 70, 1596–1608 (1981).

    Article  CAS  Google Scholar 

  7. Sworakowski, J. Ferroelectricity and related properties of molecular solids. Ferroelectrics 128, 295–306 (1992).

    Article  CAS  Google Scholar 

  8. Shiozaki, Y., Nakamura, E. & Mitsui, T. (eds) Landolt–Börnstein Numerical Data and Functional Relationships in Science and Technology New Series, Group III (Crystal and Solid State Physics), Vols 16 (1982), 28 (1990) and 36 (2006) (Springer, Berlin).

    Google Scholar 

  9. Furukawa, T., Date, M. & Fukada, E. Hysteresis phenomena in polyvinylidene fluoride under high electric field. J. Appl. Phys. 51, 1135–1141 (1980).

    Article  CAS  Google Scholar 

  10. Noda, K. et al. Remanent polarization of evaporated films of vinylidene fluoride oligomers. J. Appl. Phys. 93, 2866–2870 (2003).

    Article  CAS  Google Scholar 

  11. Taylor, G. W. (ed.). Ferroelectric Liquid Crystals — Principles, Preparations and Applications (Gordon & Breach, New York, 1991).

    Google Scholar 

  12. Largerwall, S. T. Ferroelectric and Antiferroelectric Liquid Crystals (Wiley-VCH, Weinheim, 1999).

    Book  Google Scholar 

  13. Solomon, A. L. Thiourea, a new ferroelectric. Phys. Rev. 104, 1191 (1956).

    Article  CAS  Google Scholar 

  14. Goldsmith, G. J. & White, J. G. Ferroelectric behavior of thiourea. J. Chem. Phys. 31, 1175–1187 (1959).

    Article  CAS  Google Scholar 

  15. Dénoyer, F. & Currat, R. in Incommensurate Phases in Dielectrics Part 2 (Materials) (eds Blinc, R. & Levanyuk, A. P.) 129–160 (North-Holland, Amsterdam, 1986).

    Book  Google Scholar 

  16. Bordeaux, D., Bornarel, J., Capiomont, A. & Lajzerowicz-Bonneteau, J. New ferroelastic-ferroelectric compound: tanane. Phys. Rev. Lett. 31, 314–317 (1973).

    Article  Google Scholar 

  17. Lipscomb, G. F., Garito, A. F. & Wei, T. S. An apparent ferroelectric transition in an organic diacetylene solid. Ferroelectrics 23, 161–172 (1980).

    Article  CAS  Google Scholar 

  18. Schultes, H., Strohriegl, P. & Dormann, E. Pyroelectric properties for single crystals of the disubstituted diacetylene DNP. Ferroelectrics 70, 161–173 (1986).

    Article  CAS  Google Scholar 

  19. Gruner-Bauer, P. & Dormann, E. The ferroelectric low-temperature phase of single crystals of the substituted diacetylene 1,6-bis(2,4-dinitrophenoxy)-2,4-hexadiyne (DNP). J. Phys. Condens. Matter 4, 5599–5609 (1992).

    Article  CAS  Google Scholar 

  20. Choudhury, R. R. & Chitra, R. Molecular symmetry and ferroelectricity in pure organic molecular crystals. Cryst. Res. Technol. 41, 1045–1048 (2006).

    Article  CAS  Google Scholar 

  21. Zikmund, Z. et al. Search for new molecular organic ferroelectrics. Ferroelectrics 58, 223–228 (1994).

    Article  Google Scholar 

  22. Kroupa, J., Vanẽk, P., Krupkova, R. & Zikmund, Z. Dielectric and optical properties of weak ferroelectric cyclohexan-1,1′-diacetic acid. Ferroelectrics 202, 229–234 (1997).

    Article  CAS  Google Scholar 

  23. Koval, S., Kohanoff, J., Lasave, J., Colizzi, G. & Migoni, R. L. First-principles study of ferroelectricity and isotope effects in H-bonded KH2PO4 crystal. Phys. Rev. B 71, 184102 (2005).

    Article  Google Scholar 

  24. Szklarz, P. & Bator, G. Pyroelectric properties of tricyclohexylmethanol (TCHM) single crystal J. Phys. Chem. Solids 66, 121–125 (2005).

    Article  CAS  Google Scholar 

  25. Yamamura, Y., Saitoh, H., Sumita, M. & Saito, K. One-dimensional correlation in the dipolar Ising crystal tricyclohexylmethanol: crystal structure revisited and heat capacity. J. Phys. Condens. Matter 19, 176219 (2007).

    Article  Google Scholar 

  26. Bator, G., Jakubas, R. & Malarski, Z. Molecular dynamics in the α,α-dicyclohexyl-cyclohexanemethanol single crystal [(C6H11)3COH]. J. Phys. C 19, 2799–2809 (1986).

    Article  CAS  Google Scholar 

  27. Semmingsen, D. & Feder, J. A structural phase transition in squaric acid. Solid State Commun. 15, 1369–1372 (1974).

    Article  CAS  Google Scholar 

  28. Feder, J. Two-dimensional ferroelectricity. Ferroelectrics 12, 71–84 (1976).

    Article  CAS  Google Scholar 

  29. Ishii, F., Nagaosa, N., Tokura, Y. & Terakura, K. Covalent ferroelectricity in hydrogen-bonded organic molecular systems. Phys. Rev. B 73, 212105 (2006).

    Article  Google Scholar 

  30. Sugawara, T. & Takasu, I. Tautomerism in the solid state. Adv. Phys. Org. Chem. 32, 219–265 (1999).

    CAS  Google Scholar 

  31. Gilli, G., Bellucci, F., Ferretti, V. & Bertolasi, V. Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the β-diketone fragment, V. J. Am. Chem. Soc. 111, 1023–1028 (1989).

    Article  CAS  Google Scholar 

  32. Katrusiak, A. Stereochemistry and transformation of −OH···O= hydrogen bonds. Part I. Polymorphism and phase transition of 1,3-cyclohexanedione crystal. J. Mol. Struct. 269, 329–354 (1992).

    Article  CAS  Google Scholar 

  33. Sugawara, T. et al. Organic paraelectrics resulting from tautomerization coupled with proton-transfer. Solid State Commun. 83, 665–668 (1992).

    Article  CAS  Google Scholar 

  34. Mochida, T., Izuoka, A., Sugawara, T., Moritomo, Y. & Tokura, Y. Organic hydrogen-bonded dielectrics: quantum paraelectricity based on tautomerization of 9-hydroxyphenalenone derivatives. J. Chem. Phys. 101, 7971–7973 (1994).

    Article  CAS  Google Scholar 

  35. Takasu, I., Izuoka, A., Sugawara, T. & Mochida, T. Observation of quantum paraelectricity in an intermolecular ionic hydrogen-bonded crystal of a squaric acid derivative. J. Phys. Chem. B 108, 5527–5531 (2004).

    Article  CAS  Google Scholar 

  36. Szafrański, M., Katrusiak, A. & McIntyre, G. J. Ferroelectric order of parallel bistable hydrogen bonds. Phys. Rev. Lett. 89, 215507 (2002).

    Article  Google Scholar 

  37. Katrusiak, A. & Szafrański, M. Disproportionation of pyrazine in N–H+···N hydrogen-bonded complexes: new materials of exceptional dielectric response. J. Am. Chem. Soc. 128, 15775–15785 (2006).

    Article  CAS  Google Scholar 

  38. Tokura, Y. et al. Domain-wall dynamics in organic charge-transfer compounds with one-dimensional ferroelectricity. Phys. Rev. Lett. 63, 2405–2408 (1989).

    Article  CAS  Google Scholar 

  39. Okamoto, H. et al. Anomalous dielectric response in tetrathiafulvalene-p-chloranil as observed in temperature- and pressure-induced neutral-to-ionic phase transition. Phys. Rev. B 43, 8224–8232 (1991).

    Article  CAS  Google Scholar 

  40. Le Cointe, M. et al. Symmetry breaking and structural changes at the neutral-to-ionic transition in tetrathiafulvalene-p-chloranil. Phys. Rev. B 51, 3374–3386 (1995).

    Article  CAS  Google Scholar 

  41. García, P., Dahaoui, S., Fertey, P. & Lecomte, C. Crystallographic investigation of temperature-induced phase transition of the tetrathiafulvalene-p-bromanil, TTF-BA charge transfer complex. Phys. Rev. B 72, 104115 (2005).

    Article  Google Scholar 

  42. Torrance, J. B., Vazquez, J. E., Mayerle, J. J. & Lee, V. Y. Discovery of a neutral-to-ionic phase transition in organic materials. Phys. Rev. Lett. 46, 253–257 (1981).

    Article  CAS  Google Scholar 

  43. Torrance, J. B. et al. Anomalous nature of neutral-to-ionic phase transition in tetrathiafulvalene-chloranil. Phys. Rev. Lett. 47, 1747–1750 (1981).

    Article  CAS  Google Scholar 

  44. Horiuchi, S., Okimoto, Y., Kumai, R. & Tokura, Y. Anomalous valence fluctuation near a ferroelectric transition in an organic charge-transfer complex. J. Phys. Soc. Jpn 69, 1302–1305 (2000).

    Article  CAS  Google Scholar 

  45. Okimoto, Y., Horiuchi, S., Saitoh, E., Kumai, R. & Tokura Y. Far-infrared optical response of neutral–ionic phase transition in an organic charge-transfer complex. Phys. Rev. Lett. 87, 187401 (2001).

    Article  Google Scholar 

  46. Girlando, A., Painelli, A., Bewick, S. A. & Soos, Z. G. Charge fluctuations and electron–phonon coupling in organic charge-transfer salts with neutral–ionic and Peierls transitions. Synth. Metals 141, 129–138 (2004).

    Article  CAS  Google Scholar 

  47. Horiuchi, S., Okimoto, Y., Kumai, R. & Tokura, Y. Quantum phase transition in organic charge-transfer complexes. Science 299, 229–232 (2003).

    Article  CAS  Google Scholar 

  48. Soos, Z. G., Bewick, S. A., Peri, A. & Painelli, A. Dielectric response of modified Hubbard models with neutral–ionic and Peierls transitions. J. Chem. Phys. 120, 6712–6720 (2004).

    Article  CAS  Google Scholar 

  49. Nad, F. & Monceau, P. Dielectric response of the charge ordered state in quasi-one-dimensional organic conductors. J. Phys. Soc. Jpn 75, 051005 (2006).

    Article  Google Scholar 

  50. Girlando, A., Pecile, C. & Torrance, J. B. A key to understanding ionic mixed stacked organic solids: tetrathiafulvalene-bromanil (TTF-BA). Solid State Commun. 54, 753–759 (1985).

    Article  CAS  Google Scholar 

  51. Horiuchi, S., Kumai, R., Okimoto Y. & Tokura, Y. Order–disorder transition of nonplanar molecules and dielectric anomaly in a crystal of charge-transfer complex. J. Am. Chem. Soc. 121, 6757–6758 (1999).

    Article  CAS  Google Scholar 

  52. Horiuchi, S., Kumai, R., Okimoto Y. & Tokura, Y. Chemical approach to neutral–ionic valence instability, quantum phase transition, and relaxor ferroelectricity in organic charge-transfer complexes. Chem. Phys. 325, 78–91 (2006).

    Article  CAS  Google Scholar 

  53. Tokura, Y., Okamoto, H., Koda, T., Mitani, T. & Saito, G. Nonlinear electric transport and switching phenomenon in the mixed-stack charge-transfer crystal tetrathiafulvalene-p-chloranil. Phys. Rev. B 38, 2215–2218 (1988).

    Article  CAS  Google Scholar 

  54. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, 1995).

    Book  Google Scholar 

  55. Horiuchi, S. et al. Ferroelectricity near room temperature in co-crystals of nonpolar organic molecules. Nature Mater. 4, 163–166 (2005).

    Article  CAS  Google Scholar 

  56. Kumai, R., Horiuchi, S., Okimoto, Y. & Tokura, Y. Large dielectric susceptibility associated with proton transfer in a supramolecular structure of chloranilic acid and 5,5′-dimethyl-2,2′-bipyridine. J. Chem. Phys. 125, 084715 (2006).

    Article  Google Scholar 

  57. Horiuchi, S., Kumai, R. & Tokura, Y. A supramolecular ferroelectric realized by collective proton transfer. Angew. Chem. Int. Ed. 46, 3497–3501 (2007).

    Article  CAS  Google Scholar 

  58. Wallenfels, K. & Friedrich, K. Zur Hydrolyse und Alkolyse des Fluoranils. Chem. Ber. 90, 3070–3082 (1957).

    Google Scholar 

  59. Perrin, D. D. Dissociation Constants of Organic Bases in Aqueous Solution (Butterworths, London, 1965); Supplement (Butterworths, London, 1972).

    Google Scholar 

  60. Zaman, M. B., Tomura, M. & Yamashita, Y. Crystal engineering using anilic acids and dipyridyl compounds through a new supramolecular synthon. J. Org. Chem. 66, 5987–5995 (2001).

    Article  CAS  Google Scholar 

  61. Almeida, A. et al. Pyroelectric effect in benzyl. Ferroelectrics 79, 253–256 (1988).

    Article  Google Scholar 

  62. Horiuchi, S., Kumai, R. & Tokura, Y. Room-temperature ferroelectricity and gigantic dielectric susceptibility on a supramolecular architecture of phenazine and deuterated chloranilic acid. J. Am. Chem. Soc. 127, 5010–5011 (2005).

    Article  CAS  Google Scholar 

  63. Saito, K., Amano, M., Yamamura, Y., Tojo, T. & Atake, T. Low-temperature phase transitions of an organic ferroelectrics, phenazine–chloranilic acid. J. Phys. Soc. Jpn 75, 033601 (2006).

    Article  Google Scholar 

  64. Gotoh, K., Asaji, T. & Ishida, H. Hydrogen bonding in two solid phases of phenazine-chloranilic acid (1/1) determined at 170 and 93 K. Acta Cryst. C 63, o17–o20 (2007).

    Article  CAS  Google Scholar 

  65. Asaji, T. et al. Phase transition and temperature dependent electronic state of an organic ferroelectric, phenazine-chloranilic acid (1:1). J. Phys. Condens. Matter 19, 226203 (2007).

    Article  Google Scholar 

  66. Kumai, R. et al. Structural assignment of polarization in hydrogen-bonded supramolecular ferroelectrics. J. Am. Chem. Soc. 129, 12920–12921 (2007).

    Article  CAS  Google Scholar 

  67. Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).

    Article  CAS  Google Scholar 

  68. Steiner, T., Majerz, I. & Wilson, C. C. First O–H–N hydrogen bond with a centered proton obtained by thermally induced proton migration. Angew. Chem. Int. Ed. 40, 2651–2654 (2001).

    Article  CAS  Google Scholar 

  69. Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994).

    Article  CAS  Google Scholar 

  70. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

    Article  CAS  Google Scholar 

  71. Lang, S. B. & Das-Gupta, D. K. in Handbook of Advanced Electronic and Photonic Materials and Devices Vol. 4 (Ferroelectrics and Dielectrics) (ed. Nalwa, H. S.) 1–55 (Academic, San Diego, 2001).

    Book  Google Scholar 

  72. Iwai, S. & Okamoto, H. Ultrafast phase control in one-dimensional correlated electron systems. J. Phys. Soc. Jpn 75, 011007 (2006).

    Article  Google Scholar 

  73. Nasu, K. (ed.). Photoinduced Phase Transitions (World Scientific, Singapore, 2004).

    Book  Google Scholar 

  74. Collet, E. et al. Laser-induced ferroelectric structural order in an organic charge-transfer crystal. Science 300, 612–615 (2003).

    Article  CAS  Google Scholar 

  75. Naber, R. C. G. et al. High-performance solution-processed polymer ferroelectric field-effect transistors. Nature Mater. 4, 243–248 (2005).

    Article  CAS  Google Scholar 

  76. Hiraoka, M. et al. On-substrate synthesis of molecular conductor films and circuits. Adv. Mater. 19, 3248–3251 (2007).

    Article  CAS  Google Scholar 

  77. Kamishima, Y., Akishige, Y. & Hashimoto, M. Ferroelectricity activity on organic crystal trichloroacetamide. J. Phys. Soc. Jpn 60, 2147–2150 (1991).

    Article  Google Scholar 

  78. Akishige, Y. & Kamishima, Y. Weak ferroelectricity on organic crystal trichloroacetamide. J. Phys. Soc. Jpn 70, 3124–3128 (2001).

    Article  CAS  Google Scholar 

  79. Murakami, E., Komukae, M., Osaka, T. & Makita, Y. Ferroelectricity in 3C6H4(OH)2·CH3OH. J. Phys. Soc. Jpn 59, 1147–1149 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Kumai, Y. Tokunaga, F. Ishii, N. Nagaosa, Y. Okimoto, T. Hasegawa, T. Arima and Y. Noda for discussions and collaborations in experiments. S.H. is grateful for support by a Grant-in-Aid for Scientific Research (no. 18750133) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horiuchi, S., Tokura, Y. Organic ferroelectrics. Nature Mater 7, 357–366 (2008). https://doi.org/10.1038/nmat2137

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2137

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing