Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials

Abstract

Macroscopic ferroelectric polarization switching, similar to other first-order phase transitions, is controlled by nucleation centres. Despite 50 years of extensive theoretical and experimental effort, the microstructural origins of the Landauer paradox, that is, the experimentally observed low values of coercive fields in ferroelectrics corresponding to implausibly large nucleation activation energies, are still a mystery. Here, we develop an approach to visualize the nucleation centres controlling polarization switching processes with nanometre resolution, determine their spatial and energy distribution and correlate them to local microstructure. The random-bond and random-field components of the disorder potential are extracted from positive and negative nucleation biases. Observation of enhanced nucleation activity at the 90 domain wall boundaries and intersections combined with phase-field modelling identifies them as a class of nucleation centres that control switching in structural-defect-free materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Imaging local nucleation biases in ferroelectric thin films.
Figure 2: The role of defects on the energetics of polarization switching.
Figure 3: Reconstruction of random-field and random-bond disorder components.
Figure 4: Phase-field modelling of the domain structure and polarization and field distributions in the vicinity of the ferroelastic domain.
Figure 5: Phase-field modelling of the effect of domain boundaries on nucleation bias.

References

  1. 1

    Binder, K. Theory of 1st-order phase-transitions. Rep. Prog. Phys. 50, 783–859 (1987).

    CAS  Article  Google Scholar 

  2. 2

    Chaikin, P. M. & Lubensky, T. C. Principles of Condensed Matter Physics (Cambridge Univ. Press, Cambridge, 1995).

    Google Scholar 

  3. 3

    Nattermann, T., Shapir, Y. & Vilfan, I. Interface pinning and dynamics in random-systems. Phys. Rev. B 42, 8577–8586 (1990).

    CAS  Article  Google Scholar 

  4. 4

    Nagarajan, V. et al. Misfit dislocations in nanoscale ferroelectric heterostructures. Appl. Phys. Lett. 86, 192910 (2005).

    Article  Google Scholar 

  5. 5

    Balzar, D., Ramakrishnan, P. A. & Hermann, A. M. Defect-related lattice strain and the transition temperature in ferroelectric thin films. Phys. Rev. B 70, 092103 (2004).

    Article  Google Scholar 

  6. 6

    Canedy, C. L. et al. Dielectric properties in heteroepitaxial Ba0.6Sr0.4TiO3 thin films: Effect of internal stresses and dislocation-type defects. Appl. Phys. Lett. 77, 1695–1697 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Wang, R. H., Zhu, Y. M. & Shapiro, S. M. Structural defects and the origin of the second length scale in SrTiO3 . Phys. Rev. Lett. 80, 2370–2373 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Yang, T. J., Gopalan, V., Swart, P. J. & Mohideen, U. Direct observation of pinning and bowing of a single ferroelectric domain wall. Phys. Rev. Lett. 82, 4106–4109 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Emelyanov, A. Y. & Pertsev, N. A. Abrupt changes and hysteretic behavior of 90 degrees domains in epitaxial ferroelectric thin films with misfit dislocations. Phys. Rev. B 68, 214103 (2003).

    Article  Google Scholar 

  10. 10

    Chu, M. W., Szafraniak, I., Hesse, D., Alexe, M. & Gosele, U. Elastic coupling between 90 degrees twin walls and interfacial dislocations in epitaxial ferroelectric perovskites: A quantitative high-resolution transmission electron microscopy study. Phys. Rev. B 72, 174112 (2005).

    Article  Google Scholar 

  11. 11

    Paruch, P., Giamarchi, T. & Triscone, J. M. Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 94, 197601 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Tybell, T., Paruch, P., Giamarchi, T. & Triscone, J. M. Domain wall creep in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 thin films. Phys. Rev. Lett. 89, 097601 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Landauer, R. Electrostatic considerations in BaTiO3 domain formation during polarization reversal. J. Appl. Phys. 28, 227–234 (1957).

    CAS  Article  Google Scholar 

  14. 14

    Ishibash, Y. & Takagi, Y. Ferroelectric domain switching. J. Phys. Soc. Japan 31, 506–510 (1971).

    Article  Google Scholar 

  15. 15

    Scott, J. F. et al. Switching kinetics of lead zirconate titanate sub-micron thin-film memories. J. Appl. Phys. 64, 787–792 (1988).

    CAS  Article  Google Scholar 

  16. 16

    Ahluwalia, R. & Cao, W. W. Influence of dipolar defects on switching behavior in ferroelectrics. Phys. Rev. B 63, 012103 (2001).

    Article  Google Scholar 

  17. 17

    Bratkovsky, A. M. & Levanyuk, A. P. Easy collective polarization switching in ferroelectrics. Phys. Rev. Lett. 85, 4614–4617 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Molotskii, M., Kris, R. & Rosenman, G. Fluctuon effects in ferroelectric polarization switching. J. Appl. Phys. 88, 5318–5327 (2000).

    CAS  Article  Google Scholar 

  19. 19

    Gerra, G., Tagantsev, A. K. & Setter, N. Surface-stimulated nucleation of reverse domains in ferroelectrics. Phys. Rev. Lett. 94, 107602 (2005).

    CAS  Article  Google Scholar 

  20. 20

    Ahluwalia, R. & Cao, W. W. Effect of surface induced nucleation of ferroelastic domains on polarization switching in constrained ferroelectrics. J. Appl. Phys. 93, 537–544 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Grigoriev, A. et al. Nanosecond domain wall dynamics in ferroelectric Pb(Zr,Ti)O3 thin films. Phys. Rev. Lett. 96, 187601 (2006).

    Article  Google Scholar 

  22. 22

    Gruverman, A. et al. Direct studies of domain switching dynamics in thin film ferroelectric capacitors. Appl. Phys. Lett. 87, 054107 (2005).

    Article  Google Scholar 

  23. 23

    Kim, D. J. et al. Observation of inhomogeneous domain nucleation in epitaxial Pb(Zr,Ti)O3 capacitors. Appl. Phys. Lett. 91, 132903 (2007).

    Article  Google Scholar 

  24. 24

    Vrejoiu, I. et al. Threading dislocations in epitaxial ferroelectric PbZr0.2Ti0.8O3 films and their effect on polarization backswitching. Phil. Mag. 86, 4477–4486 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Jesse, S., Lee, H. N. & Kalinin, S. V. Quantitative mapping of switching behavior in piezoresponse force microscopy. Rev. Sci. Instrum. 77, 073702 (2006).

    Article  Google Scholar 

  26. 26

    Ganpule, C. S. et al. Imaging three-dimensional polarization in epitaxial polydomain ferroelectric thin films. J. Appl. Phys. 91, 1477–1481 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Molotskii, M. et al. Ferroelectric domain breakdown. Phys. Rev. Lett. 90, 187601 (2003).

    Article  Google Scholar 

  28. 28

    Morozovska, A. N. et al. Piezoresponse force spectroscopy of ferroelectric-semiconductor materials. J. Appl. Phys. 102, 114108 (2007).

    Article  Google Scholar 

  29. 29

    Kalinin, S. V. et al. Quantitative determination of tip parameters in piezoresponse force microscopy. Appl. Phys. Lett. 90, 212905 (2007).

    Article  Google Scholar 

  30. 30

    Ponomareva, I., Naumov, II & Bellaiche, L. Low-dimensional ferroelectrics under different electrical and mechanical boundary conditions: Atomistic simulations. Phys. Rev. B 72, 214118 (2005).

    Article  Google Scholar 

  31. 31

    Choudhury, S., Li, Y. L., Krill, C. & Chen, L. Q. Effect of grain orientation and grain size on ferroelectric domain switching and evolution: Phase field simulations. Acta Mater. 55, 1415–1426 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Scott, J. F. Ferroelectric Memories (Springer, Berlin, 2000).

    Google Scholar 

  33. 33

    Waser, R. Nanoelectronics and Information Technology (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  34. 34

    Tsymbal, E. Y. & Kohlstedt, H. Applied physics—Tunneling across a ferroelectric. Science 313, 181–183 (2006).

    CAS  Article  Google Scholar 

  35. 35

    Tybell, T., Ahn, C. H. & Triscone, J. M. Control and imaging of ferroelectric domains over large areas with nanometer resolution in atomically smooth epitaxial Pb(Zr0.2Ti0.8)O−3 thin films. Appl. Phys. Lett. 72, 1454–1456 (1998).

    CAS  Article  Google Scholar 

  36. 36

    Cho, Y., Hashimoto, S., Odagawa, N., Tanaka, K. & Hiranaga, Y. Nanodomain manipulation for ultrahigh density ferroelectric data storage. Nanotechnology 17, S137–-S141 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Research sponsored by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, US Department of Energy (S.J., A.P.B. and S.V.K.) and the ORNL LDRD program (B.J.R.). J.X.Z., S.C. and L.-Q.C. at Penn State acknowledge the financial support of the NSF under DMR-0507146 and DOE under DE-FG02-07ER46417. Multiple discussions with A. Tagantsev and J. Scott are gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sergei V. Kalinin.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jesse, S., Rodriguez, B., Choudhury, S. et al. Direct imaging of the spatial and energy distribution of nucleation centres in ferroelectric materials. Nature Mater 7, 209–215 (2008). https://doi.org/10.1038/nmat2114

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing