Abstract
The ability to pattern functional polymers at different length scales is important for research fields including cell biology, tissue engineering and medicinal science and the development of optics and electronics. The interest and capabilities of polymer patterning have originated from the abundance of functionalities of polymers and a wide range of applications of the patterns. This paper reviews recent advances in top-down and bottom-up patterning of polymers using photolithography, printing techniques, self-assembly of block copolymers and instability-induced patterning. Finally, challenges and future directions are discussed from the point of view of both applicability and strategies for the surface patterning of polymers.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A digitally driven manufacturing process for high resolution patterning of cell formations
Biomedical Microdevices Open Access 21 April 2023
-
Two-colour light activated covalent bond formation
Nature Communications Open Access 26 May 2022
-
Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing
Nature Communications Open Access 09 November 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout








References
Shimoda, T., Morii, K., Seki, S. & Kiguchi, H. Inkjet printing of light-emitting polymer displays. Mater. Res. Soc. Bull. 28, 821–827 (2003).
Black, C. T. et al. Polymer self assembly in semiconductor microelectronics. IBM J. Res. Dev. 51, 605–633 (2007).
Singh, T. B. & Sariciftci, N. S. Progress in plastic electronics devices. Annu. Rev. Mater. Res. 36, 199–230 (2006).
Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biol. 7, 947–953 (2005).
Thery, M. et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl Acad. Sci. USA 103, 19771–19776 (2006).
Hollister, S. J. Porous scaffold design for tissue engineering. Nature Mater. 4, 518–524 (2005).
Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H. Block copolymer lithography: Periodic arrays of ∼1011 holes in 1 square centimeter. Science 276, 1401–1404 (1997).
Kane, R. S., Cohen, R. E. & Silbey, R. Synthesis of PbS nanoclusters within block copolymer nanoreactors. Chem. Mater. 8, 1919–1924 (1996).
Valkama, S. et al. Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching. Nature Mater. 3, 872–876 (2004).
Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G. & Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).
Fodor, S. P. A. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).
Seemann, R., Brinkmann, M., Kramer, E. J., Lange, F. F. & Lipowsky, R. Wetting morphologies at microstructured surfaces. Proc. Natl. Acad. Sci. USA 102, 1848–1852 (2005).
Hammond, P. T. Form and function in multilayer assembly: New applications at the nanoscale. Adv. Mater. 16, 1271–1293 (2004).
Li, L. J. & Fourkas, J. T. Multiphoton polymerization. Mater. Today 10, 30–37 (2007).
Moon, J. H., Ford, J. & Yang, S. Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography. Polym. Adv. Technol. 17, 83–93 (2006).
Menard, E. et al. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 107, 1117–1160 (2007).
Kelley, T. W. et al. Recent progress in organic electronics: Materials, devices, and processes. Chem. Mater. 16, 4413–4422 (2004).
Shoji, S. & Kawata, S. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin. Appl. Phys. Lett. 76, 2668–2670 (2000).
Bloomstein, T. M. et al. Critical issues in 157 nm lithography. J. Vac. Sci. Technol. B 16, 3154–3157 (1998).
Bloomstein, T. M., Marchant, M. F., Deneault, S., Hardy, D. E. & Rothschild, M. 22-nm immersion interference lithography. Opt. Express 14, 6434–6443 (2006).
Muller, C. D. et al. Multi-colour organic light-emitting displays by solution processing. Nature 421, 829–833 (2003).
Penterman, R., Klink, S. L., de Koning, H., Nisato, G. & Broer, D. J. Single-substrate liquid-crystal displays by photo-enforced stratification. Nature 417, 55–58 (2002).
Wu, H. K., Odom, T. W. & Whitesides, G. M. Reduction photolithography using microlens arrays: Applications in gray scale photolithography. Anal. Chem. 74, 3267–3273 (2002).
Revzin, A., Tompkins, R. G. & Toner, M. Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir 19, 9855–9862 (2003).
Koh, W. G., Revzin, A. & Pishko, M. V. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18, 2459–2462 (2002).
Hoffmann, J., Plotner, M., Kuckling, D. & Fischer, W. J. Photopatterning of thermally sensitive hydrogels useful for microactuators. Sens. Actuat. A 77, 139–144 (1999).
Lee, M. B. et al. Silicon planar-apertured probe array for high-density near-field optical storage. Appl. Opt. 38, 3566–3571 (1999).
Aldred, M. P. et al. A full-color electroluminescent device and patterned photoalignment using light-emitting liquid crystals. Adv. Mater. 17, 1368–1372 (2005).
Yamato, M., Konno, C., Utsumi, M., Kikuchi, A. & Okano, T. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23, 561–567 (2002).
Karp, J. M. et al. A photolithographic method to create cellular micropatterns. Biomaterials 27, 4755–4764 (2006).
Hahn, M. S. et al. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27, 2519–2524 (2006).
Albrecht, D. R., Tsang, V. L., Sah, R. L. & Bhatia, S. N. Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 5, 111–118 (2005).
Albrecht, D. R., Underhill, G. H., Wassermann, T. B., Sah, R. L. & Bhatia, S. N. Probing the role of multicellular organization in three-dimensional microenvironments. Nature Methods 3, 369–375 (2006).
Kato, K., Tanaka, K., Tsuru, S. & Sakai, S. Reflective color display using polymer-dispersed cholesteric liquid-crystal. Jpn. J. Appl. Phys. 33, 2635–2640 (1994).
Tondiglia, V. P., Natarajan, L. V., Sutherland, R. L., Tomlin, D. & Bunning, T. J. Holographic formation of electro-optical polymer-liquid crystal photonic crystals. Adv. Mater. 14, 187–191 (2002).
Miklyaev, Y. V. et al. Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations. Appl. Phys. Lett. 82, 1284–1286 (2003).
Naydenova, I., Mihaylova, E., Martin, S. & Toal, V. Holographic patterning of acrylamide-based photopolymer surface. Opt. Express 13, 4878–4889 (2005).
Lai, N. D., Liang, W. P., Lin, J. H., Hsu, C. C. & Lin, C. H. Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique. Opt. Express 13, 9605–9611 (2005).
Gordon, T. J., Yu, J. F., Yang, C. & Holdcroft, S. Direct thermal patterning of a π-conjugated polymer. Chem. Mater. 19, 2155–2161 (2007).
Chou, S. Y., Krauss, P. R., Zhang, W., Guo, L. J. & Zhuang, L. Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 15, 2897–2904 (1997).
Hua, F. et al. Polymer imprint lithography with molecular-scale resolution. Nano Lett. 4, 2467–2471 (2004).
Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 19, 495–513 (2007).
Stewart, M. D. & Willson, C. G. Imprint materials for nanoscale devices. Mater. Res. Soc. Bull. 30, 947–951 (2005).
Pfeiffer, K. et al. Multistep profiles by mix and match of nanoimprint and UV lithography. Microelectron. Eng. 57–8, 381–387 (2001).
Behl, M. et al. Towards plastic electronics: Patterning semiconducting polymers by nanoimprint lithography. Adv. Mater. 14, 588–591 (2002).
Finder, C. et al. Fluorescence microscopy for quality control in nanoimprint lithography. Microelectron. Eng. 67–8, 623–628 (2003).
Li, H. W. & Huck, W. T. S. Ordered block-copolymer assembly using nanoimprint lithography. Nano Lett. 4, 1633–1636 (2004).
Schulz, H. et al. New polymer materials for nanoimprinting. J. Vac. Sci. Technol. B 18, 1861–1865 (2000).
Nakamatsu, K., Watanabe, K., Tone, K., Namatsu, H. & Matsui, S. Nanoimprint and nanocontact technologies using hydrogen silsesquioxane. J. Vac. Sci. Technol. B 23, 507–512 (2005).
Colburn, M. et al. Characterization and modeling of volumetric and mechanical properties for step and flash imprint lithography photopolymers. J. Vac. Sci. Technol. B 19, 2685–2689 (2001).
Hagberg, E. C., Malkoch, M., Ling, Y. B., Hawker, C. J. & Carter, K. R. Effects of modulus and surface chemistry of thiol-ene photopolymers in nanoimprinting. Nano Lett. 7, 233–237 (2007).
Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. & DeSimone, J. M. Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication. J. Am. Chem. Soc. 126, 2322–2323 (2004).
Schmid, G. M. et al. Implementation of an imprint damascene process for interconnect fabrication. J. Vac. Sci. Technol. B 24, 1283–1291 (2006).
Mata, A., Fleischman, A. J. & Roy, S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 16, 276–284 (2006).
Kumar, A. & Whitesides, G. M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching. Appl. Phys. Lett. 63, 2002–2004 (1993).
Li, H. W., Muir, B. V. O., Fichet, G. & Huck, W. T. S. Nanocontact printing: A route to sub-50-nm-scale chemical and biological patterning. Langmuir 19, 1963–1965 (2003).
Hui, C. Y., Jagota, A., Lin, Y. Y. & Kramer, E. J. Constraints on microcontact printing imposed by stamp deformation. Langmuir 18, 1394–1407 (2002).
Sharpe, R. B. A. et al. Ink dependence of poly(dimethylsiloxane) contamination in microcontact printing. Langmuir 22, 5945–5951 (2006).
Workman, R. K. & Manne, S. Molecular transfer and transport in noncovalent microcontact printing. Langmuir 20, 805–815 (2004).
Quist, A. P., Pavlovic, E. & Oscarsson, S. Recent advances in microcontact printing. Anal. Bioanal. Chem. 381, 591–600 (2005).
Gates, B. D. et al. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).
Shah, R. R. et al. Using atom transfer radical polymerization to amplify monolayers of initiators patterned by microcontact printing into polymer brushes for pattern transfer. Macromolecules 33, 597–605 (2000).
Zhou, F. et al. Fabrication of positively patterned conducting polymer microstructures via one-step electrodeposition. Adv. Mater. 15, 1367–1370 (2003).
Jiang, X. P., Clark, S. L. & Hammond, P. T. Side-by-side directed multilayer patterning using surface templates. Adv. Mater. 13, 1669–1673 (2001).
Park, J., Kim, Y. S. & Hammond, P. T. Chemically nanopatterned surfaces using polyelectrolytes and ultraviolet-cured hard molds. Nano Lett. 5, 1347–1350 (2005).
Yan, L., Huck, W. T. S., Zhao, X. M. & Whitesides, G. M. Patterning thin films of poly(ethylene imine) on a reactive SAM using microcontact printing. Langmuir 15, 1208–1214 (1999).
Zhou, F., Zheng, Z. J., Yu, B., Liu, W. M. & Huck, W. T. S. Multicomponent polymer brushes. J. Am. Chem. Soc. 128, 16253–16258 (2006).
Li, D. W. & Guo, L. J. Micron-scale organic thin film transistors with conducting polymer electrodes patterned by polymer inking and stamping. Appl. Phys. Lett. 88 (2006).
Kumar, G., Wang, Y. C., Co, C. & Ho, C. C. Spatially controlled cell engineering on biomaterials using polyelectrolytes. Langmuir 19, 10550–10556 (2003).
Lin, C. C., Co, C. C. & Ho, C. C. Micropatterning proteins and cells on polylactic acid and poly(lactide-co-glycolide). Biomaterials 26, 3655–3662 (2005).
Nyffenegger, R. M. & Penner, R. M. Nanometer-scale surface modification using the scanning probe microscope: Progress since 1991. Chem. Rev. 97, 1195–1230 (1997).
Piner, R. D., Zhu, J., Xu, F., Hong, S. H. & Mirkin, C. A. “Dip-pen” nanolithography. Science 283, 661–663 (1999).
Hong, S. H., Zhu, J. & Mirkin, C. A. Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science 286, 523–525 (1999).
Hong, S. H. & Mirkin, C. A. A nanoplotter with both parallel and serial writing capabilities. Science 288, 1808–1811 (2000).
Lee, K. B., Park, S. J., Mirkin, C. A., Smith, J. C. & Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).
Xu, P., Uyama, H., Whitten, J. E., Kobayashi, S. & Kaplan, D. L. Peroxidase-catalyzed in situ polymerization of surface orientated caffeic acid. J. Am. Chem. Soc. 127, 11745–11753 (2005).
Yang, M., Sheehan, P. E., King, W. P. & Whitman, L. J. Direct writing of a conducting polymer with molecular-level control of physical dimensions and orientation. J. Am. Chem. Soc. 128, 6774–6775 (2006).
Lim, J. H. & Mirkin, C. A. Electrostatically driven dip-pen nanolithography of conducting polymers. Adv. Mater. 14, 1474–1477 (2002).
McKendry, R. et al. Creating nanoscale patterns of dendrimers on silicon surfaces with dip-pen nanolithography. Nano Lett. 2, 713–716 (2002).
Salazar, R. B., Shovsky, A., Schonherr, H. & Vancso, G. J. Dip-pen nanolithography on (bio)reactive monolayer and block-copolymer platforms: Deposition of lines of single macromolecules. Small 2, 1274–1282 (2006).
Mamin, H. J. & Rugar, D. Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett. 61, 1003–1005 (1992).
Maynor, B. W., Filocamo, S. F., Grinstaff, M. W. & Liu, J. Direct-writing of polymer nanostructures: Poly(thiophene) nanowires on semiconducting and insulating surfaces. J. Am. Chem. Soc. 124, 522–523 (2002).
Salaita, K. et al. Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays. Angew. Chem. Int. Ed. 45, 7220–7223 (2006).
Vettiger, P. et al. The “millipede” - Nanotechnology entering data storage. IEEE T. Nanotechnol. 1, 39–55 (2002).
Lee, S. W. et al. Biologically active protein nanoarrays generated using parallel dip-pen nanolithography. Adv. Mater. 18, 1133–1136 (2006).
Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).
Bonaccurso, E., Butt, H. J., Hankeln, B., Niesenhaus, B. & Graf, K. Fabrication of microvessels and microlenses from polymers by solvent droplets. Appl. Phys. Lett. 86 (2005).
Sele, C. W., von Werne, T., Friend, R. H. & Sirringhaus, H. Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution. Adv. Mater. 17, 997–1001 (2005).
Park, J. U. et al. High-resolution electrohydrodynamic jet printing. Nature Mater. 6, 782–789 (2007).
Christanti, Y. & Walker, L. M. Surface tension driven jet break up of strain-hardening polymer solutions. J. Non-Newtonian Fluid Mech. 100, 9–26 (2001).
Carter, J. C. et al. Fabricating optical fiber imaging sensors using inkjet printing technology: A pH sensor proof-of-concept. Biosens. Bioelectron. 21, 1359–1364 (2006).
Roth, E. A. et al. Inkjet printing for high-throughput cell patterning. Biomaterials 25, 3707–3715 (2004).
Vozzi, G., Previti, A., De Rossi, D. & Ahluwalia, A. Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng. 8, 1089–1098 (2002).
Vozzi, G., Flaim, C., Ahluwalia, A. & Bhatia, S. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24, 2533–2540 (2003).
Woodfield, T. B. F. et al. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25, 4149–4161 (2004).
Landers, R., Hubner, U., Schmelzeisen, R. & Mulhaupt, R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23, 4437–4447 (2002).
Geng, L. et al. Direct writing of chitosan scaffolds using a robotic system. Rapid Prototyping J. 11, 90–97 (2005).
Gratson, G. M., Xu, M. J. & Lewis, J. A. Microperiodic structures: Direct writing of three-dimensional webs. Nature 428, 386–386 (2004).
Therriault, D., White, S. R. & Lewis, J. A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Mater. 2, 265–271 (2003).
Xu, M. J., Gratson, G. M., Duoss, E. B., Shepherd, R. F. & Lewis, J. A. Biomimetic silicification of 3D polyamine-rich scaffolds assembled by direct ink writing. Soft Matter 2, 205–209 (2006).
Gratson, G. M. et al. Direct-write assembly of three-dimensional photonic crystals: Conversion of polymer scaffolds to silicon hollow-woodpile structures. Adv. Mater. 18, 461–465 (2006).
Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543 (2000).
Endres, M. et al. Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices. Tissue Eng. 9, 689–702 (2003).
Li, M. Q., Coenjarts, C. A. & Ober, C. K. in Block Copolymers II (ed. Abetz, V.) 183–226 (Advances in Polymer Science Series Vol. 190, Springer, Berlin, 2005).
Kim, G. & Libera, M. Morphological development in solvent-cast polystyrene-polybutadiene-polystyrene (SBS) triblock copolymer thin films. Macromolecules 31, 2569–2577 (1998).
Bang, J. et al. Effect of humidity on the ordering of PEO-based copolymer thin films. Macromolecules 40, 7019–7025 (2007).
Fasolka, M. J. & Mayes, A. M. Block copolymer thin films: Physics and applications. Annu. Rev. Mater. Res. 31, 323–355 (2001).
Kim, S. H., Misner, M. J., Xu, T., Kimura, M. & Russell, T. P. Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv. Mater. 16, 226–231 (2004).
Segalman, R. A., Yokoyama, H. & Kramer, E. J. Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 13, 1152–1155 (2001).
Cheng, J. Y., Mayes, A. M. & Ross, C. A. Nanostructure engineering by templated self-assembly of block copolymers. Nature Mater. 3, 823–828 (2004).
Kim, S. O. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003).
Stoykovich, M. P. et al. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308, 1442–1446 (2005).
Angelescu, D. E. et al. Macroscopic orientation of block copolymer cylinders in single-layer films by shearing. Adv. Mater. 16, 1736–1740 (2004).
Osuji, C. et al. Alignment of self-assembled hierarchical microstructure in liquid crystalline diblock copolymers using high magnetic fields. Macromolecules 37, 9903–9908 (2004).
Xu, T., Zhu, Y. Q., Gido, S. P. & Russell, T. P. Electric field alignment of symmetric diblock copolymer thin films. Macromolecules 37, 2625–2629 (2004).
Harrison, C. et al. Dynamics of pattern coarsening in a two-dimensional smectic system. Phys. Rev. E 66, 011706 (2002).
Fukunaga, K., Elbs, H., Magerle, R. & Krausch, G. Large-scale alignment of ABC block copolymer microdomains via solvent vapor treatment. Macromolecules 33, 947–953 (2000).
Du, P. et al. Additive-driven phase-selective chemistry in block copolymer thin films: The convergence of top-down and bottom-up approaches. Adv. Mater. 16, 953–957 (2004).
Kim, D. H. et al. Thin films of block copolymers as planar optical waveguides. Adv. Mater. 17, 2442–2446 (2005).
Xu, C., Wayland, B. B., Fryd, M., Winey, K. I. & Composto, R. J. pH-responsive nanostructures assembled from amphiphilic block copolymers. Macromolecules 39, 6063–6070 (2006).
Yang, S. Y. et al. Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses. Adv. Mater. 18, 709–712 (2006).
Shin, K. et al. A simple route to metal nanodots and nanoporous metal films. Nano Lett. 2, 933–936 (2002).
Urbas, A. et al. Tunable block copolymer/homopolymer photonic crystals. Adv. Mater. 12, 812–814 (2000).
Bockstaller, M., Kolb, R. & Thomas, E. L. Metallodielectric photonic crystals based on diblock copolymers. Adv. Mater. 13, 1783–1786 (2001).
Urbas, A. M., Maldovan, M., DeRege, P. & Thomas, E. L. Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 14, 1850–1853 (2002).
Chan, V. Z. H. et al. Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors. Science 286, 1716–1719 (1999).
Cheng, J. Y. et al. Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. 13, 1174–1178 (2001).
Kim, H. C. et al. A route to nanoscopic SiO2 posts via block copolymer templates. Adv. Mater. 13, 795–797 (2001).
Xu, T. et al. Block copolymer surface reconstuction: A reversible route to nanoporous films. Adv. Funct. Mater. 13, 698–702 (2003).
Hashimoto, T., Tsutsumi, K. & Funaki, Y. Nanoprocessing based on bicontinuous microdomains of block copolymers: Nanochannels coated with metals. Langmuir 13, 6869–6872 (1997).
Black, C. T. et al. Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. Appl. Phys. Lett. 79, 409–411 (2001).
Black, C. T. et al. High-capacity, self-assembled metal-oxide-semiconductor decoupling capacitors. IEEE Electron Device Lett. 25, 622–624 (2004).
Zschech, D. et al. Ordered arrays of <100>-oriented silicon nanorods by CMOS-compatible block copolymer lithography. Nano Lett. 7, 1516–1520 (2007).
Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000).
Kim, D. H., Lin, Z. Q., Kim, H. C., Jeong, U. & Russell, T. P. On the replication of block copolymer templates by poly(dimethylsiloxane) elastomers. Adv. Mater. 15, 811–814 (2003).
Temple, K. et al. Spontaneous vertical ordering and pyrolytic formation of nanoscopic ceramic patterns from poly(styrene-b-ferrocenylsilane). Adv. Mater. 15, 297–300 (2003).
Kim, D. H., Kim, S. H., Lavery, K. & Russell, T. P. Inorganic nanodots from thin films of block copolymers. Nano Lett. 4, 1841–1844 (2004).
Lin, Y. et al. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434, 55–59 (2005).
Lopes, W. A. & Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414, 735–738 (2001).
Bodenschatz, E., Pesch, W. & Ahlers, G. Recent developments in Rayleigh-Benard convection. Annu. Rev. Fluid Mech. 32, 709–778 (2000).
Mitov, Z. & Kumacheva, E. Convection-induced patterns in phase-separating polymeric fluids. Phys. Rev. Lett. 81, 3427–3430 (1998).
Xu, S. Q. & Kumacheva, E. Ordered morphologies in polymeric films produced by replication of convection patterns. J. Am. Chem. Soc. 124, 1142–1143 (2002).
Li, M. Q., Xu, S. Q. & Kumacheva, E. Convection patterns trapped in the solid state by UV-induced polymerization. Langmuir 16, 7275–7278 (2000).
Li, M. Q., Xu, S. Q. & Kumacheva, E. Convection in polymeric fluids subjected to vertical temperature gradients. Macromolecules 33, 4972–4978 (2000).
Srinivasarao, M., Collings, D., Philips, A. & Patel, S. Three-dimensionally ordered array of air bubbles in a polymer film. Science 292, 79–83 (2001).
Schaffer, E., Thurn-Albrecht, T., Russell, T. P. & Steiner, U. Electrically induced structure formation and pattern transfer. Nature 403, 874–877 (2000).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nie, Z., Kumacheva, E. Patterning surfaces with functional polymers. Nature Mater 7, 277–290 (2008). https://doi.org/10.1038/nmat2109
Issue Date:
DOI: https://doi.org/10.1038/nmat2109
This article is cited by
-
Thermal convection thresholds in an Oldroyd magnetic fluid in porous media
Pramana (2023)
-
A digitally driven manufacturing process for high resolution patterning of cell formations
Biomedical Microdevices (2023)
-
Fabrication of micro-nano patterned materials mimicking the topological structure of extracellular matrix for biomedical applications
Nano Research (2023)
-
Two-colour light activated covalent bond formation
Nature Communications (2022)
-
Self-assembly of carbohydrate-based block copolymer systems: glyconanoparticles and highly nanostructured thin films
Polymer Journal (2022)