Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Patterning surfaces with functional polymers

Abstract

The ability to pattern functional polymers at different length scales is important for research fields including cell biology, tissue engineering and medicinal science and the development of optics and electronics. The interest and capabilities of polymer patterning have originated from the abundance of functionalities of polymers and a wide range of applications of the patterns. This paper reviews recent advances in top-down and bottom-up patterning of polymers using photolithography, printing techniques, self-assembly of block copolymers and instability-induced patterning. Finally, challenges and future directions are discussed from the point of view of both applicability and strategies for the surface patterning of polymers.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Patterning of polymers by photolithography.
Figure 2: The nanoimprinting technique.
Figure 3: Microcontact printing.
Figure 4: Dip-pen nanolithorgraphy.
Figure 5: Inkjet printing.
Figure 6: Robotic deposition.
Figure 7: Patterning of surfaces using the self-assembly of block copolymers.
Figure 8: Instability-induced polymer patterning.

References

  1. Shimoda, T., Morii, K., Seki, S. & Kiguchi, H. Inkjet printing of light-emitting polymer displays. Mater. Res. Soc. Bull. 28, 821–827 (2003).

    CAS  Google Scholar 

  2. Black, C. T. et al. Polymer self assembly in semiconductor microelectronics. IBM J. Res. Dev. 51, 605–633 (2007).

    CAS  Google Scholar 

  3. Singh, T. B. & Sariciftci, N. S. Progress in plastic electronics devices. Annu. Rev. Mater. Res. 36, 199–230 (2006).

    CAS  Google Scholar 

  4. Thery, M. et al. The extracellular matrix guides the orientation of the cell division axis. Nature Cell Biol. 7, 947–953 (2005).

    CAS  Google Scholar 

  5. Thery, M. et al. Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc. Natl Acad. Sci. USA 103, 19771–19776 (2006).

    CAS  Google Scholar 

  6. Hollister, S. J. Porous scaffold design for tissue engineering. Nature Mater. 4, 518–524 (2005).

    CAS  Google Scholar 

  7. Park, M., Harrison, C., Chaikin, P. M., Register, R. A. & Adamson, D. H. Block copolymer lithography: Periodic arrays of 1011 holes in 1 square centimeter. Science 276, 1401–1404 (1997).

    CAS  Google Scholar 

  8. Kane, R. S., Cohen, R. E. & Silbey, R. Synthesis of PbS nanoclusters within block copolymer nanoreactors. Chem. Mater. 8, 1919–1924 (1996).

    CAS  Google Scholar 

  9. Valkama, S. et al. Self-assembled polymeric solid films with temperature-induced large and reversible photonic-bandgap switching. Nature Mater. 3, 872–876 (2004).

    CAS  Google Scholar 

  10. Campbell, M., Sharp, D. N., Harrison, M. T., Denning, R. G. & Turberfield, A. J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).

    CAS  Google Scholar 

  11. Fodor, S. P. A. et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773 (1991).

    CAS  Google Scholar 

  12. Seemann, R., Brinkmann, M., Kramer, E. J., Lange, F. F. & Lipowsky, R. Wetting morphologies at microstructured surfaces. Proc. Natl. Acad. Sci. USA 102, 1848–1852 (2005).

    CAS  Google Scholar 

  13. Hammond, P. T. Form and function in multilayer assembly: New applications at the nanoscale. Adv. Mater. 16, 1271–1293 (2004).

    CAS  Google Scholar 

  14. Li, L. J. & Fourkas, J. T. Multiphoton polymerization. Mater. Today 10, 30–37 (2007).

    Google Scholar 

  15. Moon, J. H., Ford, J. & Yang, S. Fabricating three-dimensional polymeric photonic structures by multi-beam interference lithography. Polym. Adv. Technol. 17, 83–93 (2006).

    CAS  Google Scholar 

  16. Menard, E. et al. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 107, 1117–1160 (2007).

    CAS  Google Scholar 

  17. Kelley, T. W. et al. Recent progress in organic electronics: Materials, devices, and processes. Chem. Mater. 16, 4413–4422 (2004).

    CAS  Google Scholar 

  18. Shoji, S. & Kawata, S. Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin. Appl. Phys. Lett. 76, 2668–2670 (2000).

    CAS  Google Scholar 

  19. Bloomstein, T. M. et al. Critical issues in 157 nm lithography. J. Vac. Sci. Technol. B 16, 3154–3157 (1998).

    CAS  Google Scholar 

  20. Bloomstein, T. M., Marchant, M. F., Deneault, S., Hardy, D. E. & Rothschild, M. 22-nm immersion interference lithography. Opt. Express 14, 6434–6443 (2006).

    CAS  Google Scholar 

  21. Muller, C. D. et al. Multi-colour organic light-emitting displays by solution processing. Nature 421, 829–833 (2003).

    Google Scholar 

  22. Penterman, R., Klink, S. L., de Koning, H., Nisato, G. & Broer, D. J. Single-substrate liquid-crystal displays by photo-enforced stratification. Nature 417, 55–58 (2002).

    CAS  Google Scholar 

  23. Wu, H. K., Odom, T. W. & Whitesides, G. M. Reduction photolithography using microlens arrays: Applications in gray scale photolithography. Anal. Chem. 74, 3267–3273 (2002).

    CAS  Google Scholar 

  24. Revzin, A., Tompkins, R. G. & Toner, M. Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir 19, 9855–9862 (2003).

    CAS  Google Scholar 

  25. Koh, W. G., Revzin, A. & Pishko, M. V. Poly(ethylene glycol) hydrogel microstructures encapsulating living cells. Langmuir 18, 2459–2462 (2002).

    CAS  Google Scholar 

  26. Hoffmann, J., Plotner, M., Kuckling, D. & Fischer, W. J. Photopatterning of thermally sensitive hydrogels useful for microactuators. Sens. Actuat. A 77, 139–144 (1999).

    CAS  Google Scholar 

  27. Lee, M. B. et al. Silicon planar-apertured probe array for high-density near-field optical storage. Appl. Opt. 38, 3566–3571 (1999).

    CAS  Google Scholar 

  28. Aldred, M. P. et al. A full-color electroluminescent device and patterned photoalignment using light-emitting liquid crystals. Adv. Mater. 17, 1368–1372 (2005).

    CAS  Google Scholar 

  29. Yamato, M., Konno, C., Utsumi, M., Kikuchi, A. & Okano, T. Thermally responsive polymer-grafted surfaces facilitate patterned cell seeding and co-culture. Biomaterials 23, 561–567 (2002).

    CAS  Google Scholar 

  30. Karp, J. M. et al. A photolithographic method to create cellular micropatterns. Biomaterials 27, 4755–4764 (2006).

    CAS  Google Scholar 

  31. Hahn, M. S. et al. Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials 27, 2519–2524 (2006).

    CAS  Google Scholar 

  32. Albrecht, D. R., Tsang, V. L., Sah, R. L. & Bhatia, S. N. Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 5, 111–118 (2005).

    CAS  Google Scholar 

  33. Albrecht, D. R., Underhill, G. H., Wassermann, T. B., Sah, R. L. & Bhatia, S. N. Probing the role of multicellular organization in three-dimensional microenvironments. Nature Methods 3, 369–375 (2006).

    CAS  Google Scholar 

  34. Kato, K., Tanaka, K., Tsuru, S. & Sakai, S. Reflective color display using polymer-dispersed cholesteric liquid-crystal. Jpn. J. Appl. Phys. 33, 2635–2640 (1994).

    CAS  Google Scholar 

  35. Tondiglia, V. P., Natarajan, L. V., Sutherland, R. L., Tomlin, D. & Bunning, T. J. Holographic formation of electro-optical polymer-liquid crystal photonic crystals. Adv. Mater. 14, 187–191 (2002).

    CAS  Google Scholar 

  36. Miklyaev, Y. V. et al. Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations. Appl. Phys. Lett. 82, 1284–1286 (2003).

    CAS  Google Scholar 

  37. Naydenova, I., Mihaylova, E., Martin, S. & Toal, V. Holographic patterning of acrylamide-based photopolymer surface. Opt. Express 13, 4878–4889 (2005).

    CAS  Google Scholar 

  38. Lai, N. D., Liang, W. P., Lin, J. H., Hsu, C. C. & Lin, C. H. Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique. Opt. Express 13, 9605–9611 (2005).

    Google Scholar 

  39. Gordon, T. J., Yu, J. F., Yang, C. & Holdcroft, S. Direct thermal patterning of a π-conjugated polymer. Chem. Mater. 19, 2155–2161 (2007).

    CAS  Google Scholar 

  40. Chou, S. Y., Krauss, P. R., Zhang, W., Guo, L. J. & Zhuang, L. Sub-10 nm imprint lithography and applications. J. Vac. Sci. Technol. B 15, 2897–2904 (1997).

    CAS  Google Scholar 

  41. Hua, F. et al. Polymer imprint lithography with molecular-scale resolution. Nano Lett. 4, 2467–2471 (2004).

    CAS  Google Scholar 

  42. Guo, L. J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 19, 495–513 (2007).

    CAS  Google Scholar 

  43. Stewart, M. D. & Willson, C. G. Imprint materials for nanoscale devices. Mater. Res. Soc. Bull. 30, 947–951 (2005).

    CAS  Google Scholar 

  44. Pfeiffer, K. et al. Multistep profiles by mix and match of nanoimprint and UV lithography. Microelectron. Eng. 57–8, 381–387 (2001).

    Google Scholar 

  45. Behl, M. et al. Towards plastic electronics: Patterning semiconducting polymers by nanoimprint lithography. Adv. Mater. 14, 588–591 (2002).

    CAS  Google Scholar 

  46. Finder, C. et al. Fluorescence microscopy for quality control in nanoimprint lithography. Microelectron. Eng. 67–8, 623–628 (2003).

    Google Scholar 

  47. Li, H. W. & Huck, W. T. S. Ordered block-copolymer assembly using nanoimprint lithography. Nano Lett. 4, 1633–1636 (2004).

    CAS  Google Scholar 

  48. Schulz, H. et al. New polymer materials for nanoimprinting. J. Vac. Sci. Technol. B 18, 1861–1865 (2000).

    CAS  Google Scholar 

  49. Nakamatsu, K., Watanabe, K., Tone, K., Namatsu, H. & Matsui, S. Nanoimprint and nanocontact technologies using hydrogen silsesquioxane. J. Vac. Sci. Technol. B 23, 507–512 (2005).

    CAS  Google Scholar 

  50. Colburn, M. et al. Characterization and modeling of volumetric and mechanical properties for step and flash imprint lithography photopolymers. J. Vac. Sci. Technol. B 19, 2685–2689 (2001).

    CAS  Google Scholar 

  51. Hagberg, E. C., Malkoch, M., Ling, Y. B., Hawker, C. J. & Carter, K. R. Effects of modulus and surface chemistry of thiol-ene photopolymers in nanoimprinting. Nano Lett. 7, 233–237 (2007).

    CAS  Google Scholar 

  52. Rolland, J. P., Van Dam, R. M., Schorzman, D. A., Quake, S. R. & DeSimone, J. M. Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication. J. Am. Chem. Soc. 126, 2322–2323 (2004).

    CAS  Google Scholar 

  53. Schmid, G. M. et al. Implementation of an imprint damascene process for interconnect fabrication. J. Vac. Sci. Technol. B 24, 1283–1291 (2006).

    CAS  Google Scholar 

  54. Mata, A., Fleischman, A. J. & Roy, S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 16, 276–284 (2006).

    Google Scholar 

  55. Kumar, A. & Whitesides, G. M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ink followed by chemical etching. Appl. Phys. Lett. 63, 2002–2004 (1993).

    CAS  Google Scholar 

  56. Li, H. W., Muir, B. V. O., Fichet, G. & Huck, W. T. S. Nanocontact printing: A route to sub-50-nm-scale chemical and biological patterning. Langmuir 19, 1963–1965 (2003).

    CAS  Google Scholar 

  57. Hui, C. Y., Jagota, A., Lin, Y. Y. & Kramer, E. J. Constraints on microcontact printing imposed by stamp deformation. Langmuir 18, 1394–1407 (2002).

    CAS  Google Scholar 

  58. Sharpe, R. B. A. et al. Ink dependence of poly(dimethylsiloxane) contamination in microcontact printing. Langmuir 22, 5945–5951 (2006).

    CAS  Google Scholar 

  59. Workman, R. K. & Manne, S. Molecular transfer and transport in noncovalent microcontact printing. Langmuir 20, 805–815 (2004).

    CAS  Google Scholar 

  60. Quist, A. P., Pavlovic, E. & Oscarsson, S. Recent advances in microcontact printing. Anal. Bioanal. Chem. 381, 591–600 (2005).

    CAS  Google Scholar 

  61. Gates, B. D. et al. New approaches to nanofabrication: Molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).

    CAS  Google Scholar 

  62. Shah, R. R. et al. Using atom transfer radical polymerization to amplify monolayers of initiators patterned by microcontact printing into polymer brushes for pattern transfer. Macromolecules 33, 597–605 (2000).

    CAS  Google Scholar 

  63. Zhou, F. et al. Fabrication of positively patterned conducting polymer microstructures via one-step electrodeposition. Adv. Mater. 15, 1367–1370 (2003).

    CAS  Google Scholar 

  64. Jiang, X. P., Clark, S. L. & Hammond, P. T. Side-by-side directed multilayer patterning using surface templates. Adv. Mater. 13, 1669–1673 (2001).

    CAS  Google Scholar 

  65. Park, J., Kim, Y. S. & Hammond, P. T. Chemically nanopatterned surfaces using polyelectrolytes and ultraviolet-cured hard molds. Nano Lett. 5, 1347–1350 (2005).

    CAS  Google Scholar 

  66. Yan, L., Huck, W. T. S., Zhao, X. M. & Whitesides, G. M. Patterning thin films of poly(ethylene imine) on a reactive SAM using microcontact printing. Langmuir 15, 1208–1214 (1999).

    CAS  Google Scholar 

  67. Zhou, F., Zheng, Z. J., Yu, B., Liu, W. M. & Huck, W. T. S. Multicomponent polymer brushes. J. Am. Chem. Soc. 128, 16253–16258 (2006).

    CAS  Google Scholar 

  68. Li, D. W. & Guo, L. J. Micron-scale organic thin film transistors with conducting polymer electrodes patterned by polymer inking and stamping. Appl. Phys. Lett. 88 (2006).

  69. Kumar, G., Wang, Y. C., Co, C. & Ho, C. C. Spatially controlled cell engineering on biomaterials using polyelectrolytes. Langmuir 19, 10550–10556 (2003).

    CAS  Google Scholar 

  70. Lin, C. C., Co, C. C. & Ho, C. C. Micropatterning proteins and cells on polylactic acid and poly(lactide-co-glycolide). Biomaterials 26, 3655–3662 (2005).

    CAS  Google Scholar 

  71. Nyffenegger, R. M. & Penner, R. M. Nanometer-scale surface modification using the scanning probe microscope: Progress since 1991. Chem. Rev. 97, 1195–1230 (1997).

    CAS  Google Scholar 

  72. Piner, R. D., Zhu, J., Xu, F., Hong, S. H. & Mirkin, C. A. “Dip-pen” nanolithography. Science 283, 661–663 (1999).

    CAS  Google Scholar 

  73. Hong, S. H., Zhu, J. & Mirkin, C. A. Multiple ink nanolithography: Toward a multiple-pen nano-plotter. Science 286, 523–525 (1999).

    CAS  Google Scholar 

  74. Hong, S. H. & Mirkin, C. A. A nanoplotter with both parallel and serial writing capabilities. Science 288, 1808–1811 (2000).

    CAS  Google Scholar 

  75. Lee, K. B., Park, S. J., Mirkin, C. A., Smith, J. C. & Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).

    CAS  Google Scholar 

  76. Xu, P., Uyama, H., Whitten, J. E., Kobayashi, S. & Kaplan, D. L. Peroxidase-catalyzed in situ polymerization of surface orientated caffeic acid. J. Am. Chem. Soc. 127, 11745–11753 (2005).

    CAS  Google Scholar 

  77. Yang, M., Sheehan, P. E., King, W. P. & Whitman, L. J. Direct writing of a conducting polymer with molecular-level control of physical dimensions and orientation. J. Am. Chem. Soc. 128, 6774–6775 (2006).

    CAS  Google Scholar 

  78. Lim, J. H. & Mirkin, C. A. Electrostatically driven dip-pen nanolithography of conducting polymers. Adv. Mater. 14, 1474–1477 (2002).

    CAS  Google Scholar 

  79. McKendry, R. et al. Creating nanoscale patterns of dendrimers on silicon surfaces with dip-pen nanolithography. Nano Lett. 2, 713–716 (2002).

    CAS  Google Scholar 

  80. Salazar, R. B., Shovsky, A., Schonherr, H. & Vancso, G. J. Dip-pen nanolithography on (bio)reactive monolayer and block-copolymer platforms: Deposition of lines of single macromolecules. Small 2, 1274–1282 (2006).

    CAS  Google Scholar 

  81. Mamin, H. J. & Rugar, D. Thermomechanical writing with an atomic force microscope tip. Appl. Phys. Lett. 61, 1003–1005 (1992).

    CAS  Google Scholar 

  82. Maynor, B. W., Filocamo, S. F., Grinstaff, M. W. & Liu, J. Direct-writing of polymer nanostructures: Poly(thiophene) nanowires on semiconducting and insulating surfaces. J. Am. Chem. Soc. 124, 522–523 (2002).

    CAS  Google Scholar 

  83. Salaita, K. et al. Massively parallel dip-pen nanolithography with 55000-pen two-dimensional arrays. Angew. Chem. Int. Ed. 45, 7220–7223 (2006).

    CAS  Google Scholar 

  84. Vettiger, P. et al. The “millipede” - Nanotechnology entering data storage. IEEE T. Nanotechnol. 1, 39–55 (2002).

    Google Scholar 

  85. Lee, S. W. et al. Biologically active protein nanoarrays generated using parallel dip-pen nanolithography. Adv. Mater. 18, 1133–1136 (2006).

    CAS  Google Scholar 

  86. Sirringhaus, H. et al. High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123–2126 (2000).

    CAS  Google Scholar 

  87. Bonaccurso, E., Butt, H. J., Hankeln, B., Niesenhaus, B. & Graf, K. Fabrication of microvessels and microlenses from polymers by solvent droplets. Appl. Phys. Lett. 86 (2005).

  88. Sele, C. W., von Werne, T., Friend, R. H. & Sirringhaus, H. Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution. Adv. Mater. 17, 997–1001 (2005).

    CAS  Google Scholar 

  89. Park, J. U. et al. High-resolution electrohydrodynamic jet printing. Nature Mater. 6, 782–789 (2007).

    CAS  Google Scholar 

  90. Christanti, Y. & Walker, L. M. Surface tension driven jet break up of strain-hardening polymer solutions. J. Non-Newtonian Fluid Mech. 100, 9–26 (2001).

    CAS  Google Scholar 

  91. Carter, J. C. et al. Fabricating optical fiber imaging sensors using inkjet printing technology: A pH sensor proof-of-concept. Biosens. Bioelectron. 21, 1359–1364 (2006).

    CAS  Google Scholar 

  92. Roth, E. A. et al. Inkjet printing for high-throughput cell patterning. Biomaterials 25, 3707–3715 (2004).

    CAS  Google Scholar 

  93. Vozzi, G., Previti, A., De Rossi, D. & Ahluwalia, A. Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng. 8, 1089–1098 (2002).

    CAS  Google Scholar 

  94. Vozzi, G., Flaim, C., Ahluwalia, A. & Bhatia, S. Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition. Biomaterials 24, 2533–2540 (2003).

    CAS  Google Scholar 

  95. Woodfield, T. B. F. et al. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25, 4149–4161 (2004).

    CAS  Google Scholar 

  96. Landers, R., Hubner, U., Schmelzeisen, R. & Mulhaupt, R. Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering. Biomaterials 23, 4437–4447 (2002).

    CAS  Google Scholar 

  97. Geng, L. et al. Direct writing of chitosan scaffolds using a robotic system. Rapid Prototyping J. 11, 90–97 (2005).

    Google Scholar 

  98. Gratson, G. M., Xu, M. J. & Lewis, J. A. Microperiodic structures: Direct writing of three-dimensional webs. Nature 428, 386–386 (2004).

    CAS  Google Scholar 

  99. Therriault, D., White, S. R. & Lewis, J. A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Mater. 2, 265–271 (2003).

    CAS  Google Scholar 

  100. Xu, M. J., Gratson, G. M., Duoss, E. B., Shepherd, R. F. & Lewis, J. A. Biomimetic silicification of 3D polyamine-rich scaffolds assembled by direct ink writing. Soft Matter 2, 205–209 (2006).

    CAS  Google Scholar 

  101. Gratson, G. M. et al. Direct-write assembly of three-dimensional photonic crystals: Conversion of polymer scaffolds to silicon hollow-woodpile structures. Adv. Mater. 18, 461–465 (2006).

    CAS  Google Scholar 

  102. Hutmacher, D. W. Scaffolds in tissue engineering bone and cartilage. Biomaterials 21, 2529–2543 (2000).

    CAS  Google Scholar 

  103. Endres, M. et al. Osteogenic induction of human bone marrow-derived mesenchymal progenitor cells in novel synthetic polymer-hydrogel matrices. Tissue Eng. 9, 689–702 (2003).

    CAS  Google Scholar 

  104. Li, M. Q., Coenjarts, C. A. & Ober, C. K. in Block Copolymers II (ed. Abetz, V.) 183–226 (Advances in Polymer Science Series Vol. 190, Springer, Berlin, 2005).

    Google Scholar 

  105. Kim, G. & Libera, M. Morphological development in solvent-cast polystyrene-polybutadiene-polystyrene (SBS) triblock copolymer thin films. Macromolecules 31, 2569–2577 (1998).

    CAS  Google Scholar 

  106. Bang, J. et al. Effect of humidity on the ordering of PEO-based copolymer thin films. Macromolecules 40, 7019–7025 (2007).

    CAS  Google Scholar 

  107. Fasolka, M. J. & Mayes, A. M. Block copolymer thin films: Physics and applications. Annu. Rev. Mater. Res. 31, 323–355 (2001).

    CAS  Google Scholar 

  108. Kim, S. H., Misner, M. J., Xu, T., Kimura, M. & Russell, T. P. Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv. Mater. 16, 226–231 (2004).

    CAS  Google Scholar 

  109. Segalman, R. A., Yokoyama, H. & Kramer, E. J. Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 13, 1152–1155 (2001).

    CAS  Google Scholar 

  110. Cheng, J. Y., Mayes, A. M. & Ross, C. A. Nanostructure engineering by templated self-assembly of block copolymers. Nature Mater. 3, 823–828 (2004).

    CAS  Google Scholar 

  111. Kim, S. O. et al. Epitaxial self-assembly of block copolymers on lithographically defined nanopatterned substrates. Nature 424, 411–414 (2003).

    CAS  Google Scholar 

  112. Stoykovich, M. P. et al. Directed assembly of block copolymer blends into nonregular device-oriented structures. Science 308, 1442–1446 (2005).

    CAS  Google Scholar 

  113. Angelescu, D. E. et al. Macroscopic orientation of block copolymer cylinders in single-layer films by shearing. Adv. Mater. 16, 1736–1740 (2004).

    CAS  Google Scholar 

  114. Osuji, C. et al. Alignment of self-assembled hierarchical microstructure in liquid crystalline diblock copolymers using high magnetic fields. Macromolecules 37, 9903–9908 (2004).

    CAS  Google Scholar 

  115. Xu, T., Zhu, Y. Q., Gido, S. P. & Russell, T. P. Electric field alignment of symmetric diblock copolymer thin films. Macromolecules 37, 2625–2629 (2004).

    CAS  Google Scholar 

  116. Harrison, C. et al. Dynamics of pattern coarsening in a two-dimensional smectic system. Phys. Rev. E 66, 011706 (2002).

    Google Scholar 

  117. Fukunaga, K., Elbs, H., Magerle, R. & Krausch, G. Large-scale alignment of ABC block copolymer microdomains via solvent vapor treatment. Macromolecules 33, 947–953 (2000).

    CAS  Google Scholar 

  118. Du, P. et al. Additive-driven phase-selective chemistry in block copolymer thin films: The convergence of top-down and bottom-up approaches. Adv. Mater. 16, 953–957 (2004).

    CAS  Google Scholar 

  119. Kim, D. H. et al. Thin films of block copolymers as planar optical waveguides. Adv. Mater. 17, 2442–2446 (2005).

    CAS  Google Scholar 

  120. Xu, C., Wayland, B. B., Fryd, M., Winey, K. I. & Composto, R. J. pH-responsive nanostructures assembled from amphiphilic block copolymers. Macromolecules 39, 6063–6070 (2006).

    CAS  Google Scholar 

  121. Yang, S. Y. et al. Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses. Adv. Mater. 18, 709–712 (2006).

    CAS  Google Scholar 

  122. Shin, K. et al. A simple route to metal nanodots and nanoporous metal films. Nano Lett. 2, 933–936 (2002).

    CAS  Google Scholar 

  123. Urbas, A. et al. Tunable block copolymer/homopolymer photonic crystals. Adv. Mater. 12, 812–814 (2000).

    CAS  Google Scholar 

  124. Bockstaller, M., Kolb, R. & Thomas, E. L. Metallodielectric photonic crystals based on diblock copolymers. Adv. Mater. 13, 1783–1786 (2001).

    CAS  Google Scholar 

  125. Urbas, A. M., Maldovan, M., DeRege, P. & Thomas, E. L. Bicontinuous cubic block copolymer photonic crystals. Adv. Mater. 14, 1850–1853 (2002).

    CAS  Google Scholar 

  126. Chan, V. Z. H. et al. Ordered bicontinuous nanoporous and nanorelief ceramic films from self assembling polymer precursors. Science 286, 1716–1719 (1999).

    CAS  Google Scholar 

  127. Cheng, J. Y. et al. Formation of a cobalt magnetic dot array via block copolymer lithography. Adv. Mater. 13, 1174–1178 (2001).

    CAS  Google Scholar 

  128. Kim, H. C. et al. A route to nanoscopic SiO2 posts via block copolymer templates. Adv. Mater. 13, 795–797 (2001).

    CAS  Google Scholar 

  129. Xu, T. et al. Block copolymer surface reconstuction: A reversible route to nanoporous films. Adv. Funct. Mater. 13, 698–702 (2003).

    CAS  Google Scholar 

  130. Hashimoto, T., Tsutsumi, K. & Funaki, Y. Nanoprocessing based on bicontinuous microdomains of block copolymers: Nanochannels coated with metals. Langmuir 13, 6869–6872 (1997).

    CAS  Google Scholar 

  131. Black, C. T. et al. Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication. Appl. Phys. Lett. 79, 409–411 (2001).

    CAS  Google Scholar 

  132. Black, C. T. et al. High-capacity, self-assembled metal-oxide-semiconductor decoupling capacitors. IEEE Electron Device Lett. 25, 622–624 (2004).

    CAS  Google Scholar 

  133. Zschech, D. et al. Ordered arrays of <100>-oriented silicon nanorods by CMOS-compatible block copolymer lithography. Nano Lett. 7, 1516–1520 (2007).

    CAS  Google Scholar 

  134. Thurn-Albrecht, T. et al. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290, 2126–2129 (2000).

    CAS  Google Scholar 

  135. Kim, D. H., Lin, Z. Q., Kim, H. C., Jeong, U. & Russell, T. P. On the replication of block copolymer templates by poly(dimethylsiloxane) elastomers. Adv. Mater. 15, 811–814 (2003).

    CAS  Google Scholar 

  136. Temple, K. et al. Spontaneous vertical ordering and pyrolytic formation of nanoscopic ceramic patterns from poly(styrene-b-ferrocenylsilane). Adv. Mater. 15, 297–300 (2003).

    CAS  Google Scholar 

  137. Kim, D. H., Kim, S. H., Lavery, K. & Russell, T. P. Inorganic nanodots from thin films of block copolymers. Nano Lett. 4, 1841–1844 (2004).

    CAS  Google Scholar 

  138. Lin, Y. et al. Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434, 55–59 (2005).

    CAS  Google Scholar 

  139. Lopes, W. A. & Jaeger, H. M. Hierarchical self-assembly of metal nanostructures on diblock copolymer scaffolds. Nature 414, 735–738 (2001).

    CAS  Google Scholar 

  140. Bodenschatz, E., Pesch, W. & Ahlers, G. Recent developments in Rayleigh-Benard convection. Annu. Rev. Fluid Mech. 32, 709–778 (2000).

    Google Scholar 

  141. Mitov, Z. & Kumacheva, E. Convection-induced patterns in phase-separating polymeric fluids. Phys. Rev. Lett. 81, 3427–3430 (1998).

    CAS  Google Scholar 

  142. Xu, S. Q. & Kumacheva, E. Ordered morphologies in polymeric films produced by replication of convection patterns. J. Am. Chem. Soc. 124, 1142–1143 (2002).

    CAS  Google Scholar 

  143. Li, M. Q., Xu, S. Q. & Kumacheva, E. Convection patterns trapped in the solid state by UV-induced polymerization. Langmuir 16, 7275–7278 (2000).

    Google Scholar 

  144. Li, M. Q., Xu, S. Q. & Kumacheva, E. Convection in polymeric fluids subjected to vertical temperature gradients. Macromolecules 33, 4972–4978 (2000).

    CAS  Google Scholar 

  145. Srinivasarao, M., Collings, D., Philips, A. & Patel, S. Three-dimensionally ordered array of air bubbles in a polymer film. Science 292, 79–83 (2001).

    CAS  Google Scholar 

  146. Schaffer, E., Thurn-Albrecht, T., Russell, T. P. & Steiner, U. Electrically induced structure formation and pattern transfer. Nature 403, 874–877 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia Kumacheva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nie, Z., Kumacheva, E. Patterning surfaces with functional polymers. Nature Mater 7, 277–290 (2008). https://doi.org/10.1038/nmat2109

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2109

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing