Abstract
Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. Such a development is contingent on identifying materials with higher thermoelectric efficiency than available at present, which is a challenge owing to the conflicting combination of material traits that are required. Nevertheless, because of modern synthesis and characterization techniques, particularly for nanoscale materials, a new era of complex thermoelectric materials is approaching. We review recent advances in the field, highlighting the strategies used to improve the thermopower and reduce the thermal conductivity.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Rowe, D. M. (ed.) CRC Handbook of Thermoelectrics (CRC, Boca Raton, 1995).
Matsubara, K. in International Conference on Thermoelectrics 418–423 (2002).
DiSalvo, F. J. Thermoelectric cooling and power generation. Science 285, 703–706 (1999).
Rowe, D. M. (ed.) CRC Handbook of Thermoelectrics: Macro to Nano (CRC, Boca Raton, 2005).
Dresselhaus, M. S. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007).
Chen, G., Dresselhaus, M. S., Dresselhaus, G., Fleurial, J. P. & Caillat, T. Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003).
Uher, C. in Thermoelectric Materials Research I (ed. Tritt, T.) 139–253 (Semiconductors and Semimetals Series 69, Elsevier, 2001).
Nolas, G. S., Poon, J. & Kanatzidis, M. Recent developments in bulk thermoelectric materials. Mater. Res. Soc. Bull. 31, 199–205 (2006).
Kauzlarich, S. M., Brown, S. R. & Snyder, G. J. Zintl phases for thermoelectric devices. Dalton Trans. 2099–2107 (2007).
Goldsmid, H. J. Applications of Thermoelectricity (Methuen, London, 1960).
Tritt, T. M. (ed.) Recent Trends in Thermoelectric Materials Research (Academic, San Diego, 2001).
Heikes, R. R. & Ure, R. W. Thermoelectricity: Science and Engineering (Interscience, New York, 1961).
Sales, B. C. Electron crystals and phonon glasses: a new path to improved thermoelectric materials. Mater. Res. Soc. Bull. 23, 15–21 (1998).
Koumoto, K., Terasaki, I. & Funahashi, R. Complex oxide materials for potential thermoelectric applications. Mater. Res. Soc. Bull. 31, 206–210 (2006).
Mahan, G. D. in Solid State Physics Vol. 51 (eds Ehrenreich, H. & Spaepen, F.) 81–157 (Elsevier, 1998).
Rosi, F. D. Thermoelectricity and thermoelectric power generation. Solid-State Electron. 11, 833–848 (1968).
Rosi, F. D., Hockings, E. F. & Lindenblad, N. E. Semiconducting materials for thermoelectric power generation. RCA Rev. 22, 82–121 (1961).
Wood, C. Materials for thermoelectric energy-conversion. Rep. Prog. Phys. 51, 459–539 (1988).
Cutler, M., Leavy, J. F. & Fitzpatrick, R. L. Electronic transport in semimetallic cerium sulfide. Phys. Rev. 133, A1143–A1152 (1964).
Bhandari, C. M. & Rowe, D. M. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) Ch. 5, 43–53 (CRC, Boca Raton, 1995).
Snyder, G. J., Caillat, T. & Fleurial, J.-P. Thermoelectric transport and magnetic properties of the polaron semiconductor FexCr3-xSe4 . Phys. Rev. B 62, 10185 (2000).
Slack, G. A. (ed.) Solid State Physics (Academic Press, New York, 1979).
Dames, C. & Chen, G. in Thermoelectrics Handbook Macro to Nano (ed. Rowe, D. M.) Ch. 42 (CRC, Boca Raton, 2006).
Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, M.) 407–440 (CRC, Boca Raton, 1995).
Hicks, L. D. & Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993).
Zide, J. M. O. et al. Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices. Phys. Rev. B 74, 205335 (2006).
Bhandari, C. M. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 55–65 (CRC, Boca Raton, 1995).
Wright, D. A. Thermoelectric properties of bismuth telluride and its alloys. Nature 181, 834–834 (1958).
Kusano, D. & Hori, Y. Thermoelectric properties of p-type (Bi2Te3)(0.2) (Sb2Te3)(0.8) thermoelectric material doped with PbTe. J. Jpn Inst. Met. 66, 1063–1065 (2002).
Zhu, P. W. et al. Enhanced thermoelectric properties of PbTe alloyed with Sb2Te3 . J. Phys. Condens. Matter 17, 7319–7326 (2005).
Poudeu, P. F. P. et al. Nanostructures versus solid solutions: Low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. J. Am. Chem. Soc. 128, 14347–14355 (2006).
Poudeu, P. F. R. et al. High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2 . Angew. Chem. Int. Edn 45, 3835–3839 (2006).
Feldman, J. L., Singh, D. J., Mazin, II, Mandrus, D. & Sales, B. C. Lattice dynamics and reduced thermal conductivity of filled skutterudites. Phys. Rev.B 61, R9209–R9212 (2000).
Fleurial, J.-P., Caillat, T. & Borshchevsky, A. in Proc. ICT'97 16th Int. Conf. Thermoelectrics 1–11 (IEEE Piscataway, New Jersey, 1997).
Sales, B. C., Mandrus, D. & Williams, R. K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325–1328 (1996).
Chung, D. Y. et al. A new thermoelectric material: CsBi4Te6 . J. Am. Chem. Soc. 126, 6414–6428 (2004).
Shelimova, L. E. et al. Thermoelectric properties of PbBi4Te7-based anion-substituted layered solid solutions. Inorg. Mater. 40, 1146–1152 (2004).
Shelimova, L. E. et al. Crystal structures and thermoelectric properties of layered compounds in the ATe-Bi2Te3 (A = Ge, Sn, Pb) systems. Inorg. Mater. 40, 451–460 (2004).
Kanatzidis, M. G. Structural evolution and phase homologies for “design” and prediction of solid-state compounds. Acc. Chem. Res. 38, 359–368 (2005).
Kurosaki, K., Kosuga, A., Muta, H., Uno, M. & Yamanaka, S. Ag9TITe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl. Phys. Lett. 87, 061919 (2005).
Wolfing, B., Kloc, C., Teubner, J. & Bucher, E. High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity. Phys. Rev. Lett. 86, 4350–4353 (2001).
Toberer, E. S., Sasaki, K. A., Chisholm, C. R. I., Haile, S. M. & Snyder, G. J. Local structure of interstitial Zn in β-Zn4Sb3 . Phys. Status Solidi 1, 253–255 (2007).
Chalfin, E., Lu, H. X. & Dieckmann, R. Cation tracer diffusion in the thermoelectric materials Cu3Mo6Se8 and “beta-Zn4Sb3”. Solid State Ionics 178, 447–456 (2007).
Kim, H. J., Božin, E. S., Haile, S. M., Snyder, G. J. & Billinge, S. J. L. Nanoscale alpha-structural domains in the phonon-glass thermoelectric material beta-Zn4Sb3 . Phys. Rev. B 75, 134103 (2007).
Brown, S. R., Kauzlarich, S. M., Gascoin, F. & Snyder, G. J. Yb14MnSb11: New high efficiency thermoelectric material for power generation. Chem. Mater. 18, 1873–1877 (2006).
Kauzlarich, S. M., Brown, S. R. & Snyder, G. J. Zintl phases for thermoelectric devices. Dalton Trans. 2099–2107 (2007).
Cava, R. J. Structural chemistry and the local charge picture of copper-oxide superconductors. Science 247, 656–662 (1990).
Terasaki, I., Sasago, Y. & Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev.B 56, 12685–12687 (1997).
Shin, W. & Murayama, N. Thermoelectric properties of (Bi,Pb)-Sr-Co-O oxide. J. Mater. Res. 15, 382–386 (2000).
Wang, Y. Y., Rogado, N. S., Cava, R. J. & Ong, N. P. Spin entropy as the likely source of enhanced thermopower in NaxCo2O4 . Nature 423, 425–428 (2003).
Gascoin, F., Ottensmann, S., Stark, D., Haile, S. M. & Snyder, G. J. Zintl phases as thermoelectric materials: Tuned transport properties of the compounds CaxYb1-xZn2Sb2 . Adv. Funct. Mater. 15, 1860–1864 (2005).
Yao, T. Thermal-Properties of AlAs/GaAs Superlattices. Appl. Phys. Lett. 51, 1798–1800 (1987).
Touzelbaev, M. N., Zhou, P., Venkatasubramanian, R. & Goodson, K. E. Thermal characterization of Bi2Te3/Sb2Te3 superlattices. J. Appl. Phys. 90, 763–767 (2001).
Caylor, J. C., Coonley, K., Stuart, J., Colpitts, T. & Venkatasubramanian, R. Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl. Phys. Lett. 87, 23105 (2005).
Beyer, H. et al. High thermoelectric figure of merit ZT in PbTe and Bi2Te3-based superlattices by a reduction of the thermal conductivity. Physica E 13, 965–968 (2002).
Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).
Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008).
Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–40 (1992).
Kim, W. et al. Cross-plane lattice and electronic thermal conductivities of ErAs: InGaAs/InGaAlAs superlattices. Appl. Phys. Lett. 88, 242107 (2006).
Kim, W. et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).
Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007).
Rowe, D. M., Shukla, V. S. & Savvides, N. Phonon-scattering at grain-boundaries in heavily doped fine-grained silicon-germanium alloys. Nature 290, 765–766 (1981).
Vining, C. B., Laskow, W., Hanson, J. O., Vanderbeck, R. R. & Gorsuch, P. D. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys. J. Appl. Phys. 69, 4333–4340 (1991).
Jang, K.-W. & Lee, D.-H. in Fourteenth International Conference on Thermoelectrics 108 (IEEE, 1995).
Goldsmid, H. J. & Penn, A. W. Boundary scattering of phonons in solid solutions. Phys. Lett. A 27, 523–524 (1968).
Liebmann, W. K. & Miller, E. A. Preparation phase-boundary energies, and thermoelectric properties of Insb-Sb eutectic alloys with ordered microstructures. J. Appl. Phys. 34, 2653–2659 (1963).
Ikeda, T. et al. Solidification processing of alloys in the pseudo-binary PbTe–Sb2Te3 system. Acta Mater. 55, 1227–1239 (2007).
Aliev, M. I., Khalilova, A. A., Arsaly, D. G., Ragimov, R. N. & Tanogly, M. Electrical and thermal properties of the GaSb-FeGa1.3 eutectic. Inorg. Mater. 40, 331–335 (2004).
Skrabek, E. A. & Trimmer, D. S. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 267–275 (CRC, Boca Raton, 1995).
Cook, B. A., Kramer, M. J., Wei, X., Harringa, J. L. & Levin, E. M. Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)15(GeTe)85 thermoelectric material. J. Appl. Phys. 101, 053715 (2007).
Chen, N. et al. Macroscopic thermoelectric inhomogeneities in (AgSbTe2)x(PbTe)1– x . App. Phys. Lett. 87, 171903 (2005).
Androulakis, J. et al. Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1– ySny)mSbTe2+ m . Adv. Mater. 18, 1170–1173 (2006).
Hsu, K. F. et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004).
Sootsman, J. R., Pcionek, R. J., Kong, H. J., Uher, C. & Kanatzidis, M. G. Strong reduction of thermal conductivity in nanostructured PbTe prepared by matrix encapsulation. Chem. Mater. 18, 4993–4995 (2006).
Ikeda, T. et al. Solidification processing of alloys in the pseudo-binary PbTe-Sb2Te3 system. Acta Mater. 55, 1227–1239 (2007).
Ikeda, T. et al. Self-assembled nanometer lamellae of thermoelectric PbTe and Sb2Te3 with epitaxy-like interfaces. Chem. Mater. 19, 763–767 (2007).
Clavagueramora, M. T., Surinach, S., Baro, M. D. & Clavaguera, N. Thermally activated crystallization of (GeSe2)70 (Sb2Te3)20(GeTe)10 alloy glass - morphological and calorimetric study. J. Mater. Sci. 18, 1381–1388 (1983).
Rowe, D. M. & Min, G. Alpha-plot in sigma-plot as a thermoelectric-material performance indicator. J. Mater. Sci. Lett. 14, 617–619 (1995).
Toberer, E. S., Christensen, M., Iversen, B. B. & Snyder, G. J. High temperature thermoelectric efficiency in Ba8Ga16Ge30 . Phys. Rev. B (in the press).
Caillat, T., Fleurial, J. P. & Borshchevsky, A. Preparation and thermoelectric properties of semiconducting Zn4Sb3 . J. Phys. Chem. Solids 58, 1119–1125 (1997).
Gelbstein, Y., Dashevsky, Z. & Dariel, M. P. High performance n-type PbTe-based materials for thermoelectric applications. Physica B 363, 196–205 (2005).
Vining, C. B., Laskow, W., Hanson, J. O., Vanderbeck, R. R. & Gorsuch, P. D. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys. J. Appl. Phys. 69, 4333–4340 (1991).
Culp, S. R., Poon, S. J., Hickman, N., Tritt, T. M. & Blumm, J. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C. Appl. Phys. Lett. 88, 042106 (2006).
Goldsmid, H. J. & Douglas, R. W. The use of semiconductors in thermoelectric refrigeration. Brit. J. Appl. Phys. 5, 386–390 (1954).
Scherrer, H. & Scherrer, S. in Thermoelectrics Handbook Macro to Nano (ed. rowe, D. M.) Ch. 27 (CRC, Boca Raton, 2006).
Kutasov, V. A., Lukyanova, L. N. & Vedernikov, M. V. in Thermoelectrics Handbook Macro to Nano Ch. 37 (CRC, Boca Raton, 2006).
Kuznetsov, V. L., Kuznetsova, L. A., Kaliazin, A. E. & Rowe, D. M. High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation. J. Mater. Sci. 37, 2893–2897 (2002).
Fritts, R. W. in Thermoelectric Materials and Devices (eds. Cadoff, I. B. & Miller, E.) 143–162 (Reinhold, New York, 1960).
Fleischmann, H., Luy, H. & Rupprecht, J. Neuere Untersuchungen an Halbleitenden IV VI-I V VI2 Mischkristallen. Zeitschrift Für Naturforschung A 18, 646–649 (1963).
Fleischmann, H. Wärmeleitfähigkeit, Thermokraft und Elektrische Leitfähigkeit von Halbleitenden Mischkristallen Der Form (AIx /2 BiIV1- xCVx /2)DVI. Zeitschrift Für Naturforschung A 16, 765–780 (1961).
Yim, W. M. & Amith, A. Bi-Sb alloys for magneto-thermoelectric and thermomagnetic cooling. Solid State Electron. 15, 1141 (1972).
Sidorenko, N. A. & Ivanova, L. D. Bi-Sb solid solutions: Potential materials for high-efficiency thermoelectric cooling to below 180 K. Inorg. Mater. 37, 331–335 (2001).
Snyder, G. J. Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 84, 2436–2438 (2004).
Müller, E., Drasar, C., Schilz, J. & Kaysser, W. A. Functionally graded materials for sensor and energy applications. Mater. Sci. Eng. A 362, 17–39 (2003).
Snyder, G. J. in Thermoelectrics Handbook Macro to Nano (ed. Rowe, D. M.) Ch. 9 (CRC, Boca Raton, 2006).
Snyder, G. J. & Ursell, T. Thermoelectric efficiency and compatibility. Phys. Rev. Lett. 91, 148301 (2003).
Ursell, T. S. & Snyder, G. J. in Twenty-first International Conference on Thermoelectrics ICT'02 412 (IEEE, Long Beach, California, USA, 2002).
Acknowledgements
We thank Jean-Pierre Fleurial and Thierry Caillat for discussions concerning skutterudites, Marlow Industries, Cronin Vining, Yaniv Gelbstein, Ken Kurosaki for data and discussions and JPL-NASA and the Beckman Institute at Caltech for funding.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Snyder, G., Toberer, E. Complex thermoelectric materials. Nature Mater 7, 105–114 (2008). https://doi.org/10.1038/nmat2090
Issue Date:
DOI: https://doi.org/10.1038/nmat2090
This article is cited by
-
Superconducting spintronic heat engine
Nature Communications (2024)
-
Bipolarity of large anomalous Nernst effect in Weyl magnet-based alloy films
Nature Physics (2024)
-
Full-landscape selection rules of electrons and phonons and temperature-induced effects in 2D silicon and germanium allotropes
npj Computational Materials (2024)
-
Divacancy and resonance level enables high thermoelectric performance in n-type SnSe polycrystals
Nature Communications (2024)
-
Boosting thermoelectric performance of single-walled carbon nanotubes-based films through rational triple treatments
Nature Communications (2024)