Complex thermoelectric materials

Abstract

Thermoelectric materials, which can generate electricity from waste heat or be used as solid-state Peltier coolers, could play an important role in a global sustainable energy solution. Such a development is contingent on identifying materials with higher thermoelectric efficiency than available at present, which is a challenge owing to the conflicting combination of material traits that are required. Nevertheless, because of modern synthesis and characterization techniques, particularly for nanoscale materials, a new era of complex thermoelectric materials is approaching. We review recent advances in the field, highlighting the strategies used to improve the thermopower and reduce the thermal conductivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Optimizing zT through carrier concentration tuning.
Figure 2: Complex crystal structures that yield low lattice thermal conductivity.
Figure 3: Substructure approach used to separate the electron-crystal and phonon-glass attributes of a thermoelectric.
Figure 4: Nanostructured thermoelectrics may be formed by the solid-state partitioning of a precursor phase.

References

  1. 1

    Rowe, D. M. (ed.) CRC Handbook of Thermoelectrics (CRC, Boca Raton, 1995).

    Google Scholar 

  2. 2

    Matsubara, K. in International Conference on Thermoelectrics 418–423 (2002).

    Google Scholar 

  3. 3

    DiSalvo, F. J. Thermoelectric cooling and power generation. Science 285, 703–706 (1999).

    CAS  Google Scholar 

  4. 4

    Rowe, D. M. (ed.) CRC Handbook of Thermoelectrics: Macro to Nano (CRC, Boca Raton, 2005).

    Google Scholar 

  5. 5

    Dresselhaus, M. S. et al. New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007).

    CAS  Google Scholar 

  6. 6

    Chen, G., Dresselhaus, M. S., Dresselhaus, G., Fleurial, J. P. & Caillat, T. Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2003).

    CAS  Google Scholar 

  7. 7

    Uher, C. in Thermoelectric Materials Research I (ed. Tritt, T.) 139–253 (Semiconductors and Semimetals Series 69, Elsevier, 2001).

    Google Scholar 

  8. 8

    Nolas, G. S., Poon, J. & Kanatzidis, M. Recent developments in bulk thermoelectric materials. Mater. Res. Soc. Bull. 31, 199–205 (2006).

    CAS  Google Scholar 

  9. 9

    Kauzlarich, S. M., Brown, S. R. & Snyder, G. J. Zintl phases for thermoelectric devices. Dalton Trans. 2099–2107 (2007).

  10. 10

    Goldsmid, H. J. Applications of Thermoelectricity (Methuen, London, 1960).

    Google Scholar 

  11. 11

    Tritt, T. M. (ed.) Recent Trends in Thermoelectric Materials Research (Academic, San Diego, 2001).

    Google Scholar 

  12. 12

    Heikes, R. R. & Ure, R. W. Thermoelectricity: Science and Engineering (Interscience, New York, 1961).

    Google Scholar 

  13. 13

    Sales, B. C. Electron crystals and phonon glasses: a new path to improved thermoelectric materials. Mater. Res. Soc. Bull. 23, 15–21 (1998).

    CAS  Google Scholar 

  14. 14

    Koumoto, K., Terasaki, I. & Funahashi, R. Complex oxide materials for potential thermoelectric applications. Mater. Res. Soc. Bull. 31, 206–210 (2006).

    CAS  Google Scholar 

  15. 15

    Mahan, G. D. in Solid State Physics Vol. 51 (eds Ehrenreich, H. & Spaepen, F.) 81–157 (Elsevier, 1998).

    Google Scholar 

  16. 16

    Rosi, F. D. Thermoelectricity and thermoelectric power generation. Solid-State Electron. 11, 833–848 (1968).

    Google Scholar 

  17. 17

    Rosi, F. D., Hockings, E. F. & Lindenblad, N. E. Semiconducting materials for thermoelectric power generation. RCA Rev. 22, 82–121 (1961).

    Google Scholar 

  18. 18

    Wood, C. Materials for thermoelectric energy-conversion. Rep. Prog. Phys. 51, 459–539 (1988).

    CAS  Google Scholar 

  19. 19

    Cutler, M., Leavy, J. F. & Fitzpatrick, R. L. Electronic transport in semimetallic cerium sulfide. Phys. Rev. 133, A1143–A1152 (1964).

    Google Scholar 

  20. 20

    Bhandari, C. M. & Rowe, D. M. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) Ch. 5, 43–53 (CRC, Boca Raton, 1995).

    Google Scholar 

  21. 21

    Snyder, G. J., Caillat, T. & Fleurial, J.-P. Thermoelectric transport and magnetic properties of the polaron semiconductor FexCr3-xSe4 . Phys. Rev. B 62, 10185 (2000).

    CAS  Google Scholar 

  22. 22

    Slack, G. A. (ed.) Solid State Physics (Academic Press, New York, 1979).

    Google Scholar 

  23. 23

    Dames, C. & Chen, G. in Thermoelectrics Handbook Macro to Nano (ed. Rowe, D. M.) Ch. 42 (CRC, Boca Raton, 2006).

    Google Scholar 

  24. 24

    Slack, G. A. in CRC Handbook of Thermoelectrics (ed. Rowe, M.) 407–440 (CRC, Boca Raton, 1995).

    Google Scholar 

  25. 25

    Hicks, L. D. & Dresselhaus, M. S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993).

    CAS  Google Scholar 

  26. 26

    Zide, J. M. O. et al. Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices. Phys. Rev. B 74, 205335 (2006).

    Google Scholar 

  27. 27

    Bhandari, C. M. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 55–65 (CRC, Boca Raton, 1995).

    Google Scholar 

  28. 28

    Wright, D. A. Thermoelectric properties of bismuth telluride and its alloys. Nature 181, 834–834 (1958).

    Google Scholar 

  29. 29

    Kusano, D. & Hori, Y. Thermoelectric properties of p-type (Bi2Te3)(0.2) (Sb2Te3)(0.8) thermoelectric material doped with PbTe. J. Jpn Inst. Met. 66, 1063–1065 (2002).

    CAS  Google Scholar 

  30. 30

    Zhu, P. W. et al. Enhanced thermoelectric properties of PbTe alloyed with Sb2Te3 . J. Phys. Condens. Matter 17, 7319–7326 (2005).

    CAS  Google Scholar 

  31. 31

    Poudeu, P. F. P. et al. Nanostructures versus solid solutions: Low lattice thermal conductivity and enhanced thermoelectric figure of merit in Pb9.6Sb0.2Te10-xSex bulk materials. J. Am. Chem. Soc. 128, 14347–14355 (2006).

    CAS  Google Scholar 

  32. 32

    Poudeu, P. F. R. et al. High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2 . Angew. Chem. Int. Edn 45, 3835–3839 (2006).

    CAS  Google Scholar 

  33. 33

    Feldman, J. L., Singh, D. J., Mazin, II, Mandrus, D. & Sales, B. C. Lattice dynamics and reduced thermal conductivity of filled skutterudites. Phys. Rev.B 61, R9209–R9212 (2000).

    CAS  Google Scholar 

  34. 34

    Fleurial, J.-P., Caillat, T. & Borshchevsky, A. in Proc. ICT'97 16th Int. Conf. Thermoelectrics 1–11 (IEEE Piscataway, New Jersey, 1997).

    Google Scholar 

  35. 35

    Sales, B. C., Mandrus, D. & Williams, R. K. Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272, 1325–1328 (1996).

    CAS  Google Scholar 

  36. 36

    Chung, D. Y. et al. A new thermoelectric material: CsBi4Te6 . J. Am. Chem. Soc. 126, 6414–6428 (2004).

    CAS  Google Scholar 

  37. 37

    Shelimova, L. E. et al. Thermoelectric properties of PbBi4Te7-based anion-substituted layered solid solutions. Inorg. Mater. 40, 1146–1152 (2004).

    CAS  Google Scholar 

  38. 38

    Shelimova, L. E. et al. Crystal structures and thermoelectric properties of layered compounds in the ATe-Bi2Te3 (A = Ge, Sn, Pb) systems. Inorg. Mater. 40, 451–460 (2004).

    CAS  Google Scholar 

  39. 39

    Kanatzidis, M. G. Structural evolution and phase homologies for “design” and prediction of solid-state compounds. Acc. Chem. Res. 38, 359–368 (2005).

    CAS  Google Scholar 

  40. 40

    Kurosaki, K., Kosuga, A., Muta, H., Uno, M. & Yamanaka, S. Ag9TITe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity. Appl. Phys. Lett. 87, 061919 (2005).

    Google Scholar 

  41. 41

    Wolfing, B., Kloc, C., Teubner, J. & Bucher, E. High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity. Phys. Rev. Lett. 86, 4350–4353 (2001).

    CAS  Google Scholar 

  42. 42

    Toberer, E. S., Sasaki, K. A., Chisholm, C. R. I., Haile, S. M. & Snyder, G. J. Local structure of interstitial Zn in β-Zn4Sb3 . Phys. Status Solidi 1, 253–255 (2007).

    CAS  Google Scholar 

  43. 43

    Chalfin, E., Lu, H. X. & Dieckmann, R. Cation tracer diffusion in the thermoelectric materials Cu3Mo6Se8 and “beta-Zn4Sb3”. Solid State Ionics 178, 447–456 (2007).

    CAS  Google Scholar 

  44. 44

    Kim, H. J., Božin, E. S., Haile, S. M., Snyder, G. J. & Billinge, S. J. L. Nanoscale alpha-structural domains in the phonon-glass thermoelectric material beta-Zn4Sb3 . Phys. Rev. B 75, 134103 (2007).

    Google Scholar 

  45. 45

    Brown, S. R., Kauzlarich, S. M., Gascoin, F. & Snyder, G. J. Yb14MnSb11: New high efficiency thermoelectric material for power generation. Chem. Mater. 18, 1873–1877 (2006).

    CAS  Google Scholar 

  46. 46

    Kauzlarich, S. M., Brown, S. R. & Snyder, G. J. Zintl phases for thermoelectric devices. Dalton Trans. 2099–2107 (2007).

  47. 47

    Cava, R. J. Structural chemistry and the local charge picture of copper-oxide superconductors. Science 247, 656–662 (1990).

    CAS  Google Scholar 

  48. 48

    Terasaki, I., Sasago, Y. & Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev.B 56, 12685–12687 (1997).

    Google Scholar 

  49. 49

    Shin, W. & Murayama, N. Thermoelectric properties of (Bi,Pb)-Sr-Co-O oxide. J. Mater. Res. 15, 382–386 (2000).

    CAS  Google Scholar 

  50. 50

    Wang, Y. Y., Rogado, N. S., Cava, R. J. & Ong, N. P. Spin entropy as the likely source of enhanced thermopower in NaxCo2O4 . Nature 423, 425–428 (2003).

    CAS  Google Scholar 

  51. 51

    Gascoin, F., Ottensmann, S., Stark, D., Haile, S. M. & Snyder, G. J. Zintl phases as thermoelectric materials: Tuned transport properties of the compounds CaxYb1-xZn2Sb2 . Adv. Funct. Mater. 15, 1860–1864 (2005).

    CAS  Google Scholar 

  52. 52

    Yao, T. Thermal-Properties of AlAs/GaAs Superlattices. Appl. Phys. Lett. 51, 1798–1800 (1987).

    CAS  Google Scholar 

  53. 53

    Touzelbaev, M. N., Zhou, P., Venkatasubramanian, R. & Goodson, K. E. Thermal characterization of Bi2Te3/Sb2Te3 superlattices. J. Appl. Phys. 90, 763–767 (2001).

    CAS  Google Scholar 

  54. 54

    Caylor, J. C., Coonley, K., Stuart, J., Colpitts, T. & Venkatasubramanian, R. Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl. Phys. Lett. 87, 23105 (2005).

    Google Scholar 

  55. 55

    Beyer, H. et al. High thermoelectric figure of merit ZT in PbTe and Bi2Te3-based superlattices by a reduction of the thermal conductivity. Physica E 13, 965–968 (2002).

    CAS  Google Scholar 

  56. 56

    Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167 (2008).

    CAS  Google Scholar 

  57. 57

    Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171 (2008).

    CAS  Google Scholar 

  58. 58

    Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–40 (1992).

    CAS  Google Scholar 

  59. 59

    Kim, W. et al. Cross-plane lattice and electronic thermal conductivities of ErAs: InGaAs/InGaAlAs superlattices. Appl. Phys. Lett. 88, 242107 (2006).

    Google Scholar 

  60. 60

    Kim, W. et al. Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006).

    Google Scholar 

  61. 61

    Chiritescu, C. et al. Ultralow thermal conductivity in disordered, layered WSe2 crystals. Science 315, 351–353 (2007).

    CAS  Google Scholar 

  62. 62

    Rowe, D. M., Shukla, V. S. & Savvides, N. Phonon-scattering at grain-boundaries in heavily doped fine-grained silicon-germanium alloys. Nature 290, 765–766 (1981).

    CAS  Google Scholar 

  63. 63

    Vining, C. B., Laskow, W., Hanson, J. O., Vanderbeck, R. R. & Gorsuch, P. D. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys. J. Appl. Phys. 69, 4333–4340 (1991).

    CAS  Google Scholar 

  64. 64

    Jang, K.-W. & Lee, D.-H. in Fourteenth International Conference on Thermoelectrics 108 (IEEE, 1995).

    Google Scholar 

  65. 65

    Goldsmid, H. J. & Penn, A. W. Boundary scattering of phonons in solid solutions. Phys. Lett. A 27, 523–524 (1968).

    CAS  Google Scholar 

  66. 66

    Liebmann, W. K. & Miller, E. A. Preparation phase-boundary energies, and thermoelectric properties of Insb-Sb eutectic alloys with ordered microstructures. J. Appl. Phys. 34, 2653–2659 (1963).

    CAS  Google Scholar 

  67. 67

    Ikeda, T. et al. Solidification processing of alloys in the pseudo-binary PbTe–Sb2Te3 system. Acta Mater. 55, 1227–1239 (2007).

    CAS  Google Scholar 

  68. 68

    Aliev, M. I., Khalilova, A. A., Arsaly, D. G., Ragimov, R. N. & Tanogly, M. Electrical and thermal properties of the GaSb-FeGa1.3 eutectic. Inorg. Mater. 40, 331–335 (2004).

    CAS  Google Scholar 

  69. 69

    Skrabek, E. A. & Trimmer, D. S. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 267–275 (CRC, Boca Raton, 1995).

    Google Scholar 

  70. 70

    Cook, B. A., Kramer, M. J., Wei, X., Harringa, J. L. & Levin, E. M. Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)15(GeTe)85 thermoelectric material. J. Appl. Phys. 101, 053715 (2007).

    Google Scholar 

  71. 71

    Chen, N. et al. Macroscopic thermoelectric inhomogeneities in (AgSbTe2)x(PbTe)1– x . App. Phys. Lett. 87, 171903 (2005).

    Google Scholar 

  72. 72

    Androulakis, J. et al. Nanostructuring and high thermoelectric efficiency in p-type Ag(Pb1– ySny)mSbTe2+ m . Adv. Mater. 18, 1170–1173 (2006).

    CAS  Google Scholar 

  73. 73

    Hsu, K. F. et al. Cubic AgPbmSbTe2+m: Bulk thermoelectric materials with high figure of merit. Science 303, 818–821 (2004).

    CAS  Google Scholar 

  74. 74

    Sootsman, J. R., Pcionek, R. J., Kong, H. J., Uher, C. & Kanatzidis, M. G. Strong reduction of thermal conductivity in nanostructured PbTe prepared by matrix encapsulation. Chem. Mater. 18, 4993–4995 (2006).

    CAS  Google Scholar 

  75. 75

    Ikeda, T. et al. Solidification processing of alloys in the pseudo-binary PbTe-Sb2Te3 system. Acta Mater. 55, 1227–1239 (2007).

    CAS  Google Scholar 

  76. 76

    Ikeda, T. et al. Self-assembled nanometer lamellae of thermoelectric PbTe and Sb2Te3 with epitaxy-like interfaces. Chem. Mater. 19, 763–767 (2007).

    CAS  Google Scholar 

  77. 77

    Clavagueramora, M. T., Surinach, S., Baro, M. D. & Clavaguera, N. Thermally activated crystallization of (GeSe2)70 (Sb2Te3)20(GeTe)10 alloy glass - morphological and calorimetric study. J. Mater. Sci. 18, 1381–1388 (1983).

    CAS  Google Scholar 

  78. 78

    Rowe, D. M. & Min, G. Alpha-plot in sigma-plot as a thermoelectric-material performance indicator. J. Mater. Sci. Lett. 14, 617–619 (1995).

    Google Scholar 

  79. 79

    Toberer, E. S., Christensen, M., Iversen, B. B. & Snyder, G. J. High temperature thermoelectric efficiency in Ba8Ga16Ge30 . Phys. Rev. B (in the press).

  80. 80

    Caillat, T., Fleurial, J. P. & Borshchevsky, A. Preparation and thermoelectric properties of semiconducting Zn4Sb3 . J. Phys. Chem. Solids 58, 1119–1125 (1997).

    CAS  Google Scholar 

  81. 81

    Gelbstein, Y., Dashevsky, Z. & Dariel, M. P. High performance n-type PbTe-based materials for thermoelectric applications. Physica B 363, 196–205 (2005).

    CAS  Google Scholar 

  82. 82

    Vining, C. B., Laskow, W., Hanson, J. O., Vanderbeck, R. R. & Gorsuch, P. D. Thermoelectric properties of pressure-sintered Si0.8Ge0.2 thermoelectric alloys. J. Appl. Phys. 69, 4333–4340 (1991).

    CAS  Google Scholar 

  83. 83

    Culp, S. R., Poon, S. J., Hickman, N., Tritt, T. M. & Blumm, J. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C. Appl. Phys. Lett. 88, 042106 (2006).

    Google Scholar 

  84. 84

    Goldsmid, H. J. & Douglas, R. W. The use of semiconductors in thermoelectric refrigeration. Brit. J. Appl. Phys. 5, 386–390 (1954).

    Google Scholar 

  85. 85

    Scherrer, H. & Scherrer, S. in Thermoelectrics Handbook Macro to Nano (ed. rowe, D. M.) Ch. 27 (CRC, Boca Raton, 2006).

    Google Scholar 

  86. 86

    Kutasov, V. A., Lukyanova, L. N. & Vedernikov, M. V. in Thermoelectrics Handbook Macro to Nano Ch. 37 (CRC, Boca Raton, 2006).

    Google Scholar 

  87. 87

    Kuznetsov, V. L., Kuznetsova, L. A., Kaliazin, A. E. & Rowe, D. M. High performance functionally graded and segmented Bi2Te3-based materials for thermoelectric power generation. J. Mater. Sci. 37, 2893–2897 (2002).

    CAS  Google Scholar 

  88. 88

    Fritts, R. W. in Thermoelectric Materials and Devices (eds. Cadoff, I. B. & Miller, E.) 143–162 (Reinhold, New York, 1960).

    Google Scholar 

  89. 89

    Fleischmann, H., Luy, H. & Rupprecht, J. Neuere Untersuchungen an Halbleitenden IV VI-I V VI2 Mischkristallen. Zeitschrift Für Naturforschung A 18, 646–649 (1963).

    Google Scholar 

  90. 90

    Fleischmann, H. Wärmeleitfähigkeit, Thermokraft und Elektrische Leitfähigkeit von Halbleitenden Mischkristallen Der Form (AIx /2 BiIV1- xCVx /2)DVI. Zeitschrift Für Naturforschung A 16, 765–780 (1961).

    Google Scholar 

  91. 91

    Yim, W. M. & Amith, A. Bi-Sb alloys for magneto-thermoelectric and thermomagnetic cooling. Solid State Electron. 15, 1141 (1972).

    CAS  Google Scholar 

  92. 92

    Sidorenko, N. A. & Ivanova, L. D. Bi-Sb solid solutions: Potential materials for high-efficiency thermoelectric cooling to below 180 K. Inorg. Mater. 37, 331–335 (2001).

    CAS  Google Scholar 

  93. 93

    Snyder, G. J. Application of the compatibility factor to the design of segmented and cascaded thermoelectric generators. Appl. Phys. Lett. 84, 2436–2438 (2004).

    CAS  Google Scholar 

  94. 94

    Müller, E., Drasar, C., Schilz, J. & Kaysser, W. A. Functionally graded materials for sensor and energy applications. Mater. Sci. Eng. A 362, 17–39 (2003).

    Google Scholar 

  95. 95

    Snyder, G. J. in Thermoelectrics Handbook Macro to Nano (ed. Rowe, D. M.) Ch. 9 (CRC, Boca Raton, 2006).

    Google Scholar 

  96. 96

    Snyder, G. J. & Ursell, T. Thermoelectric efficiency and compatibility. Phys. Rev. Lett. 91, 148301 (2003).

    Google Scholar 

  97. 97

    Ursell, T. S. & Snyder, G. J. in Twenty-first International Conference on Thermoelectrics ICT'02 412 (IEEE, Long Beach, California, USA, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank Jean-Pierre Fleurial and Thierry Caillat for discussions concerning skutterudites, Marlow Industries, Cronin Vining, Yaniv Gelbstein, Ken Kurosaki for data and discussions and JPL-NASA and the Beckman Institute at Caltech for funding.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Jeffrey Snyder.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Snyder, G., Toberer, E. Complex thermoelectric materials. Nature Mater 7, 105–114 (2008). https://doi.org/10.1038/nmat2090

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing