Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals


The fundamental processes that govern plasticity and determine strength in crystalline materials at small length scales have been studied for over fifty years1,2,3. Recent studies of single-crystal metallic pillars with diameters of a few tens of micrometres or less have clearly demonstrated that the strengths of these pillars increase as their diameters decrease4,5,6,7, leading to attempts to augment existing ideas about pronounced size effects8,9 with new models and simulations10,11,12,13,14,15,16,17. Through in situ nanocompression experiments inside a transmission electron microscope we can directly observe the deformation of these pillar structures and correlate the measured stress values with discrete plastic events. Our experiments show that submicrometre nickel crystals microfabricated into pillar structures contain a high density of initial defects after processing but can be made dislocation free by applying purely mechanical stress. This phenomenon, termed ‘mechanical annealing’, leads to clear evidence of source-limited deformation where atypical hardening occurs through the progressive activation and exhaustion of dislocation sources.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Two consecutive in situ TEM compression tests on a FIB microfabricated 160-nm-top-diameter Ni pillar with 〈111〉 orientation.
Figure 2: Aspects of taper leading to localized deformation.
Figure 3: Direct evidence of source-limited deformation.


  1. 1

    Brenner, S. S. Growth and properties of ‘whiskers’. Science 128, 568–575 (1958).

    Article  Google Scholar 

  2. 2

    Brenner, S. S. Tensile strength of whiskers. J. Appl. Phys. 27, 1484–1491 (1956).

    CAS  Article  Google Scholar 

  3. 3

    Herring, C. & Galt, J. K. Elastic and plastic properties of very small metal specimens. Phys. Rev. 85, 1060–1061 (1952).

    Article  Google Scholar 

  4. 4

    Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Sample dimensions influence strength and crystal plasticity. Science 305, 986–989 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Dimiduk, D. M., Uchic, M. D. & Parthasarathy, T. A. Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater. 53, 4065–4077 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Volkert, C. A. & Lilleodden, E. T. Size effects in the deformation of sub-micron Au columns. Phil. Mag. 86, 5567–5579 (2006).

    CAS  Article  Google Scholar 

  7. 7

    Greer, J. R. & Nix, W. D. Size dependence of mechanical properties of gold at the sub-micron scale. Appl. Phys. A 80, 1625–1629 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Nix, W. D. Yielding and strain hardening of thin metal films on substrates. Scr. Mater. 39, 545–554 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Nix, W. D. Mechanical properties of thin films. Metall. Trans. A 20A, 2217–2245 (1989).

    CAS  Article  Google Scholar 

  10. 10

    Greer, J. R. & Nix, W. D. Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 6 (2006).

    Article  Google Scholar 

  11. 11

    Nix, W. D., Greer, J. R., Feng, G. & Lilleodden, E. T. Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films 515, 3152–3157 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Parthasarathy, T. A., Rao, S. I., Dimiduk, D. M., Uchic, M. D. & Trinkle, D. R. Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scr. Mater. 56, 313–316 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Sieradzki, K., Rinaldi, A., Friesen, C. & Peralta, P. Length scales in crystal plasticity. Acta Mater. 54, 4533–4538 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Guo, Y., Zhuang, Z., Li, X. Y. & Chen, Z. An investigation of the combined size and rate effects on the mechanical responses of FCC metals. Int. J. Solids Struct. 44, 1180–1195 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Rabkin, E. & Srolovitz, D. J. Onset of plasticity in gold nanopillar compression. Nano Lett. 7, 101–107 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Rabkin, E., Nam, H. S. & Srolovitz, D. J. Atomistic simulation of the deformation of gold nanopillars. Acta Mater. 55, 2085–2099 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Tang, H., Schwarz, K. W. & Espinosa, H. D. Dislocation escape-related size effects in single-crystal micropillars under uniaxial compression. Acta Mater. 55, 1607–1616 (2007).

    CAS  Article  Google Scholar 

  18. 18

    Brenner, S. S. Plastic deformation of copper and silver whiskers. J. Appl. Phys. 28, 1023 (1957).

    CAS  Article  Google Scholar 

  19. 19

    Uchic, M. D., Dimiduk, D. M., Florando, J. N. & Nix, W. D. Oxide surface films on metal crystals—Response. Science 306, 1134–1135 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Wei, Q. H. & Wu, X. L. Grain boundary dynamics under mechanical annealing in two-dimensional colloids. Phys. Rev. E 70, 4 (2004).

    Google Scholar 

  21. 21

    Kiener, D., Motz, C., Rester, M., Jenko, M. & Dehm, G. FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater. Sci. Eng. A 459, 262–272 (2007).

    Article  Google Scholar 

  22. 22

    Weertman, J. & Weertman, J. R. Elementary Dislocation Theory (Oxford Univ. Press, New York, 1992).

    Google Scholar 

  23. 23

    Ziegler, J. F., Biersach, J. P. & Littmark, U. The Stopping and Range of Ions in Solids, Stopping and Range of Ions in Matter Vol. 1 (Pergamon, New York, 1985).

    Google Scholar 

  24. 24

    Zhang, H., Schuster, B. E., Wei, Q. & Ramesh, K. T. The design of accurate micro-compression experiments. Scr. Mater. 54, 181–186 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Koslowski, M. Scaling laws in plastic deformation. Phil. Mag. 87, 1175–1184 (2007).

    CAS  Article  Google Scholar 

  26. 26

    Minor, A. M. et al. A new view of the onset of plasticity during the nanoindentation of aluminium. Nature Mater. 5, 697–702 (2006).

    CAS  Article  Google Scholar 

Download references


Research performed at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, was supported by the Scientific User Facilities Division of the Office of Basic Energy Sciences, US Department of Energy under Contract No. DE-AC02-05CH11231. This work was also supported by an SBIR Phase II grant DE-FG02-04ER83979 awarded to Hysitron, which does not constitute an endorsement by DOE of the views expressed in this article. Chris Gilde is thanked for his assistance with video editing.

Author information



Corresponding author

Correspondence to Andrew M. Minor.

Supplementary information

Supplementary Information

Supplementary movie S1: material and sample preparation procedures (MOV 8145 kb)

Supplementary Information

Supplementary movie S2: experimental testing methods (MOV 6347 kb)

Supplementary Information

Supplementary movie S3: mechanical data analysis (MOV 7255 kb)

Supplementary Information

Supplementary movie S4: crystallographic analysis (MOV 9638 kb)

Supplementary Information

Supplementary movie legends, supplementary figures and references (PDF 232 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shan, Z., Mishra, R., Syed Asif, S. et al. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nature Mater 7, 115–119 (2008).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing