Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles

Abstract

Metallic nanoparticles exhibit exceptional optoelectronic properties with applications in plasmonics, biosensing and nanomedicine1,2,3,4,5. Recently, new synthesis techniques have enabled precise control over the sizes and shapes of metal nanoparticles6,7,8, occasionally leading to morphologies that cannot be properly characterized using standard techniques. An example is five-fold-twinned decahedral Au nanoparticles, which are intrinsically strained as a result of their unique geometry. Various competing models have been proposed to predict the strain states of such nanoparticles. Here, we present a detailed analysis of the internal structure of a decahedral Au nanoparticle using aberration-corrected high-resolution electron microscopy and strain mapping. Our measurements confirm the presence of a disclination, which is consistent with the commonly accepted strain model. However, we also observed shear gradients, which are absent from the models. By comparing our local strain determinations with finite-element calculations, we show the effect of elastic anisotropy on the strain state in these nanoparticles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decahedral geometry of Au nanoparticles.
Figure 2: Aberration-corrected HREM image of a 17-nm-radius defect-free decahedral Au nanoparticle.
Figure 3: Lattice-rotation distribution in the decahedral Au nanoparticle in Fig. 2a.
Figure 4: Shear-strain distribution in the decahedral Au nanoparticle in Fig. 2a.

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  CAS  Google Scholar 

  2. Zia, R., Schuller, J. A., Chandran, A. & Brongersma, M. L. Plasmonics: The next chip-scale technology. Mater. Today 9, 20–27 (2006).

    Article  CAS  Google Scholar 

  3. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  CAS  Google Scholar 

  4. Zhao, J., Zhang, X. Y., Yonzon, C. R., Haes, A. J. & Van Duyne, R. P. Localized surface plasmon resonance biosensors. Nanomedicine 1, 219–228 (2006).

    Article  CAS  Google Scholar 

  5. Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Au nanoparticles target cancer. Nano Today 2, 18–29 (2007).

    Article  Google Scholar 

  6. Nelayah, J. et al. Mapping surface plasmons on a single metallic nanoparticle. Nature Phys. 3, 348–353 (2007).

    Article  CAS  Google Scholar 

  7. Pastoriza-Santos, I., Sánchez-Iglesias, A., García de Abajo, F. J. & Liz-Marzán, L. M. Environmental optical sensitivity of gold nanodecahedra. Adv. Funct. Mater. 17, 1443–1450 (2007).

    Article  CAS  Google Scholar 

  8. Sánchez-Iglesias, A. et al. Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater. 18, 2529–2534 (2006).

    Article  Google Scholar 

  9. Reyes-Gasga, J. et al. On the structure of nanorods and nanowires with pentagonal cross-sections. J. Cryst. Growth 286, 162–172 (2006).

    Article  CAS  Google Scholar 

  10. Kirkland, A. I., Edwards, P. P., Jefferson, D. A. & Duff, D. G. The structure, characterization, and evolution of colloidal metals. Annu. Rep. Prog. Chem. C 87, 247–304 (1990).

    Article  CAS  Google Scholar 

  11. Yacamán, M. J. & Avalos-Borja, M. Electron-microscopy of metallic nanoparticles using high-resolution and medium-resolution techniques. Catal. Rev.-Sci. Eng. 34, 55–127 (1992).

    Article  Google Scholar 

  12. Gryaznov, V. G. et al. Pentagonal symmetry and disclinations in small particles. Cryst. Res. Technol. 34, 1091–1119 (1999).

    Article  CAS  Google Scholar 

  13. Marks, L. D. Inhomogeneous strains in small particles. Surf. Sci. 150, 302–318 (1985).

    Article  CAS  Google Scholar 

  14. Bagley, B. G. A dense packing of hard spheres with five-fold symmetry. Nature 208, 674–675 (1965).

    Article  Google Scholar 

  15. Yang, C. Y. Crystallography of decahedral and icosahedral particles.1. Geometry of twinning. J. Cryst. Growth 47, 274–282 (1979).

    Article  CAS  Google Scholar 

  16. Allpress, J. G. & Sanders, J. V. The structure and orientation of crystals in deposits of metals on micas. Surf. Sci. 7, 1–25 (1967).

    Article  Google Scholar 

  17. Ino, S. Epitaxial growth of metals on rocksalt faces cleaved in vacuum. II. Orientation and structure of gold particles formed in ultrahigh vacuum. J. Phys. Soc. Japan 21, 346–362 (1966).

    Article  CAS  Google Scholar 

  18. Ino, S. & Ogawa, T. Multiply twinned particles at earlier stages of gold film formation on alkalihalide crystals. J. Phys. Soc. Japan 22, 1365–1374 (1969).

    Article  Google Scholar 

  19. Marks, L. D. & Howie, A. Multiply-twinned particles in silver catalysts. Nature 282, 196–198 (1979).

    Article  CAS  Google Scholar 

  20. deWit, R. Partial disclinations. J. Phys. C 5, 529–534 (1972).

    Article  CAS  Google Scholar 

  21. Howie, A. & Marks, L. D. Elastic strains and the energy balance for multiply twinned particles. Phil. Mag. A 49, 95–109 (1984).

    Article  CAS  Google Scholar 

  22. Hofmeister, H. Forty-years study of five-fold twinned structures in small particles and thin films. Cryst. Res. Technol. 33, 3–25 (1998).

    Article  CAS  Google Scholar 

  23. Chen, Q., Tanaka, M. & Furuya, K. Unusual crystallographic structure and its fluctuation of indium nanoparticles as-deposited and observed with HRTEM using the UHV-DC-TEM system. Surf. Sci. 440, 398–406 (1999).

    Article  CAS  Google Scholar 

  24. Wu, Y., Chen, Q., Takeguchi, M. & Furuya, K. High-resolution transmission electron microscopy study on the anomalous structure of lead nanoparticles with UHV-MBE-TEM system. Surf. Sci. 462, 203–210 (2000).

    Article  CAS  Google Scholar 

  25. Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  Google Scholar 

  26. Sutton, A. P. & Balluffi, R. W. in Interfaces in Crystalline Materials (ed. Brook, R. J. et al.) (Clarendon, Oxford, 1995).

    Google Scholar 

  27. <http://www.hremresearch.com>.

  28. Hüe, F. et al. Calibration of projector lens distortions. J. Electron Microsc. 54, 181–190 (2005).

    Google Scholar 

  29. <http://www.comsol.fr>.

  30. Huebner, K. H. H., Dewhirst, D. L., Smith, D. E. & Byrom, T. G. The Finite Element Method for Engineers (Wiley, New York, 2001).

    Google Scholar 

Download references

Acknowledgements

We thank A. Sánchez-Iglesias for help with particle synthesis, L. Durand for help with the modelling and C. Gatel for help with image processing. We thank the IP3 project of the 6th Framework Program of the European Commission: ESTEEM (Enabling Science and Technology for European Electron Microscopy - Contract number 0260019) for financial support. M.E. thanks the Becas Faro program, part of the Leonardo da Vinci program of the European Union, for financial support. B.R.-G., I.P.-S. and L.M.L.-M. thank the Spanish Minsterio de Education y Ciencia (Grant Nos MAT2004-02991 and NAN2004-08843-C05-03) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

C.L.J., E.S., M.E. and M.J.H. carried out imaging, analysis and modelling. B.R.-G., I.P.-S. and L.M.L.-M. carried out particle synthesis.

Corresponding author

Correspondence to Craig L. Johnson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, C., Snoeck, E., Ezcurdia, M. et al. Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nature Mater 7, 120–124 (2008). https://doi.org/10.1038/nmat2083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2083

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing