Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gate-induced insulating state in bilayer graphene devices


The potential of graphene-based materials consisting of one or a few layers of graphite for integrated electronics originates from the large room-temperature carrier mobility in these systems (10,000 cm2 V−1 s−1). However, the realization of electronic devices such as field-effect transistors will require controlling and even switching off the electrical conductivity by means of gate electrodes, which is made difficult by the absence of a bandgap in the intrinsic material. Here, we demonstrate the controlled induction of an insulating state—with large suppression of the conductivity—in bilayer graphene, by using a double-gate device configuration that enables an electric field to be applied perpendicular to the plane. The dependence of the resistance on temperature and electric field, and the absence of any effect in a single-layer device, strongly suggest that the gate-induced insulating state originates from the recently predicted opening of a bandgap between valence and conduction bands.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Bandgap in graphene devices.
Figure 2: Gate voltage and temperature dependence of transport through monolayer graphene.
Figure 3: Gate voltage and temperature-dependent transport through bilayer graphene.
Figure 4: Gate-induced insulating state in the bilayer graphene device.
Figure 5: Thermally activated hopping transport in biased bilayer graphene.


  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    CAS  Google Scholar 

  3. Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    CAS  Google Scholar 

  4. Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nature Phys. 2, 177–180 (2006).

    Article  Google Scholar 

  5. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    CAS  Article  Google Scholar 

  6. Wallace, P. R. The band theory of graphite. Phys. Rev. 71, 622–634 (1947).

    CAS  Article  Google Scholar 

  7. Katsnelson, M. I., Novoselov, K. S. & Geim, A. K. Chiral tunnelling and the Klein paradox in graphene. Nature Phys. 2, 620–625 (2006).

    CAS  Article  Google Scholar 

  8. Han, M. Y., Özyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Article  Google Scholar 

  9. Giovannetti, G., Khomyakov, P. A., Brocks, G., Kelly, P. J. & Van den Brink, J. Substrate-induced bandgap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007).

    Article  Google Scholar 

  10. McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 74, 161403 (2006).

    Article  Google Scholar 

  11. Semenoff, G. W. Condensed matter simulation of a three-dimensional anomaly. Phys. Rev. Lett. 53, 2449–2452 (1984).

    Article  Google Scholar 

  12. McCann, E. & Fal’ko, V. I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Phys. Rev. Lett. 96, 086805 (2006).

    Article  Google Scholar 

  13. Min, H., Sahu, B. R., Banerjee, S. K. & MacDonald, A. H. Ab initio theory of gate induced gaps in graphene bilayers. Phys. Rev. B 75, 155115 (2007).

    Article  Google Scholar 

  14. Ohta, T., Bostwick, A., Seyller, T., Horn, K. & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science 313, 951–954 (2006).

    CAS  Article  Google Scholar 

  15. Castro, E. V. et al. Biased bilayer graphene: Semiconductor with a gap tunable by electric field effect. Phys. Rev. Lett. 99, 216802 (2007).

    Article  Google Scholar 

  16. Blake, P. et al. Making graphene visible. Appl. Phys. Lett. 91, 063124 (2007).

    Article  Google Scholar 

  17. Abergel, D. S. L., Russell, A. & Fal’ko, V. I. Visibility of graphene flakes on a dielectric substrate. Appl. Phys. Lett. 91, 063125 (2007).

    Article  Google Scholar 

  18. Huard, B. et al. Transport measurements across a tunable potential barrier in graphene. Phys. Rev. Lett. 98, 236803 (2007).

    CAS  Article  Google Scholar 

  19. Williams, J. R., DiCarlo, L. & Marcus, C. M. Quantum Hall effect in a gate-controlled p–n junction of graphene. Science 317, 638–641 (2007).

    CAS  Article  Google Scholar 

  20. Özyilmaz, B. et al. Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions. Phys. Rev. Lett. 99, 166804 (2007).

    Article  Google Scholar 

  21. Madelung, O. Introduction to Solid-State Theory (Springer, Berlin, Heidelberg, 1978).

    Book  Google Scholar 

  22. Shklovskii, B. I. & Efros, A. L. Electronic Properties of Doped Semiconductors (Springer, Berlin, Heidelberg, 1984).

    Book  Google Scholar 

  23. Nilsson, J. & Castro Neto, A. H. Impurities in a biased graphene bilayer. Phys. Rev. Lett. 98, 126801 (2007).

    Article  Google Scholar 

  24. Zhang, Y. et al. Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2007).

    Article  Google Scholar 

  25. Martin, J. et al. Observation of electron-hole puddles in graphene using a scanning single electron transistor. Nature Phys. advance online publication 25 November 2007 (doi:10.1038/nphys781).

    Article  Google Scholar 

Download references


We gratefully acknowledge P. Jarillo-Herrero for experimental help in the early stages of this work, L. P. Kouwenhoven for providing access to a dilution refrigerator, E. McCann, A. H. MacDonald and H. Min for useful discussions, and NWO, FOM and NanoNed for financial support.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Alberto F. Morpurgo or Lieven M. K. Vandersypen.

Supplementary information

Supplementary Information

Supplementary information and figure S1 (PDF 173 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oostinga, J., Heersche, H., Liu, X. et al. Gate-induced insulating state in bilayer graphene devices. Nature Mater 7, 151–157 (2008).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing