Abstract
Ferroelectrics are materials exhibiting spontaneous electric polarization due to dipoles formed by displacements of charged ions inside the crystal unit cell. Their exceptional properties are exploited in a variety of microelectronic applications. As ferroelectricity is strongly influenced by surfaces, interfaces and domain boundaries, there is great interest in exploring how the local atomic structure affects the electric properties. Here, using the negative spherical-aberration imaging technique in an aberration-corrected transmission electron microscope, we investigate the cation–oxygen dipoles near 180∘ domain walls in epitaxial PbZr0.2Ti0.8O3 thin films on the atomic scale. The width and dipole distortion across a transversal wall and a longitudinal wall are measured, and on this basis the local polarization is calculated. For the first time, a large difference in atomic details between charged and uncharged domain walls is reported.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
DMPFIT: A Tool for Atomic-Scale Metrology via Nonlinear Least-Squares Fitting of Peaks in Atomic-Resolution TEM Images
Nanomanufacturing and Metrology Open Access 24 May 2022
-
Gaussian process analysis of electron energy loss spectroscopy data: multivariate reconstruction and kernel control
npj Computational Materials Open Access 28 September 2021
-
Deep learning ferroelectric polarization distributions from STEM data via with and without atom finding
npj Computational Materials Open Access 16 September 2021
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





References
Setter, N. & Waser, R. Electroceramic materials. Acta Mater. 48, 151–178 (2000).
Dawber, M., Rabe, K. M. & Scott, J. F. Physics of thin-film ferroelectric oxides. Rev. Mod. Phys. 77, 1083–1130 (2005).
Scott, J. F. Applications of modern ferroelectrics. Science 315, 954–959 (2007).
Roelofs, A. et al. Depolarizing-field-mediated 180 degrees switching in ferroelectric thin films with 90 degrees domains. Appl. Phys. Lett. 80, 1424 (2001).
Jung, D. J., Dawber, M., Scott, J. F., Sinnamon, L. J. & Gregg, J. M. Switching dynamics in ferroelectric thin films: An experimental survey. Integrat. Ferroelectr. 48, 59–68 (2002).
Gysel, R., Stolichnov, I., Setter, N. & Pavius, M. Ferroelectric film switching via oblique domain growth observed by cross-sectional nanoscale imaging. Appl. Phys. Lett. 89, 082906 (2006).
Stemmer, S., Streiffer, S. K., Ernst, F. & Rühle, M. Atomistic structure of 90∘ domain walls in ferroelectric PbTiO3 thin films. Phil. Mag. A 71, 713–724 (1995).
Foster, C. M. et al. Single-crystal Pb(ZrxTi1−x)O3 thin films prepared by metalorganic chemical vapor deposition: Systematic compositional variation of electronic and optical properties. J. Appl. Phys. 81, 2349–2357 (1997).
Lee, K. S., Choi, J. H., Lee, J. Y. & Baik, S. Domain formation in epitaxial Pb(Zr,Ti)O3 thin films. J. Appl. Phys. 90, 4095–4102 (2001).
Streiffer, S. K. et al. Observation of nanoscale 180∘ stripe domains in ferroelectric PbTiO3 thin films. Phys. Rev. Lett. 89, 67601–67604 (2002).
Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).
Foeth, M., Sfera, A., Stadelmann, P. & Buffat, P.-A. A comparison of HREM and weak beam transmission electron microscopy for the quantitative measurement of the thickness of ferroelectric domain walls. J. Electron Microsc. 48, 717–723 (1999).
Floquet, N. et al. Ferroelectric domain walls in BaTiO3: Fingerprints in XRPD diagrams and quantitative HRTEM image analysis. J. Physique III 7, 1105–1128 (1997).
Tanaka, M. & Honjo, G. Electron optical studies of barium titanate single crystal films. J. Phys. Soc. Japan 19, 954–970 (1964).
Tanaka, M. Contrast of 180∘ domains of PbTiO3 in an electron microscopic image. Acta Cryst. A 31, 59–63 (1975).
Gevers, R., Blank, H. & Amelinckx, S. Extension of the Howie–Whelan equations for electron diffraction to non-centro symmetrical crystals. Phys. Status Solidi 13, 449–465 (1966).
Serneels, R. et al. Friedel’s law in electron diffraction as applied to the study of domain structures in non-centrosymmetrical crystals. Phys. Status Solidi B 58, 277–292 (1973).
Wicks, B. J. & Lewis, M. H. Direct observations of ferroelectric domains in lithium niobate. Phys. Status Solidi 26, 571–576 (1968).
Bursill, L. A. & Lin, P. J. Electron microscopic studies of ferroelectric crystals. Ferroelectric 70, 191–203 (1986).
Sanchez, A. M., Ruterana, P., Benamara, M. & Strunk, H. P. Inversion domains and pinholes in GaN grown over Si(111). Appl. Phys. Lett. 82, 4471–4473 (2003).
Liu, Y. Z. et al. Inversion domain boundary in a ZnO film. Phil. Mag. Lett. 87, 687–693 (2007).
Daimon, Y. & Cho, Y. Cross-sectional observation of nanodomain dots formed in both congruent and stoichiometric LiTaO3 crystals. Appl. Phys. Lett. 90, 192906 (2007).
Jia, C. L., Lentzen, M. & Urban, K. Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870–873 (2003).
Jia, C. L. & Urban, K. Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303, 2001–2004 (2004).
Haider, M. et al. Electron microscopy image enhanced. Nature 392, 768–769 (1998).
Jia, C. L., Lentzen, M. & Urban, K. High-resolution transmission electron microscopy using negative spherical aberration. Microsc. Microanal. 10, 174–184 (2004).
Vrejoiu, I. et al. Intrinsic ferroelectric properties of strained tetragonal PbZr0.2Ti0.8O3 obtained on layer-by-layer grown, defect-free single-crystalline films. Adv. Mater. 18, 1657–1661 (2006).
Wu, X. & Vanderbilt, D. Theory of hypothetical ferroelectric superlattices incorporating head-to-head and tail-to-tail 180∘ domain walls. Phys. Rev. B 73, 020103 (2006).
Houben, L., Thust, A. & Urban, K. Atomic-precision determination of the reconstruction of a 90∘ tilt boundary in YBa2Cu3O7−δ by aberration corrected HRTEM. Ultramicroscopy 106, 200–214 (2006).
Williams, D. B. & Carter, C. B. Transmission Electron Microscopy (Plenum, New York and London, 1996).
Zhong, W., King-Smith, R. D. & Vanderbilt, D. Giant LO-TO splittings in perovskite ferroelectrics. Phys. Rev. Lett. 72, 3618–3621 (1994).
Pöykkö, S. & Chadi, D. J. Ab initio study of 180∘ domain wall energy and structure in PbTiO3 . Appl. Phys. Lett. 75, 2830–2832 (1999).
Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002).
Catalan, G., Scott, J. F., Schilling, A. & Gregg, J. M. Wall thickness dependence of the scaling law for ferroic stripe domains. J. Phys. Condens. Matter 19, 02201 (2007).
Miller, R. C. & Weinreich, G. Mechanism for the sidewise motion of 180-degrees domain walls in barium titanate. Phys. Rev. 117, 1460–1466 (1960).
Hayashi, M. Kinetics of domain wall motion in ferroelectric switching. 1. General formulation. J. Phys. Soc. Japan 33, 616 (1972).
Gopalan, V., Dierolf, V. & Scrymgeour, D. A. Defect-domain wall interactions in trigonal ferroelectrics. Annu. Rev. Mater. Res. 37, 449–89 (2007).
O’Keefe, M. A. & Kilaas, R. Advances in high-resolution image simulation. Scan Microsc. Suppl. 2, 225–244 (1988).
Acknowledgements
The authors thank L. Houben for continuous support in using the software package for image mapping.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Supplementary Information
Supplementary information and figures S1-S5 (PDF 1218 kb)
Rights and permissions
About this article
Cite this article
Jia, CL., Mi, SB., Urban, K. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nature Mater 7, 57–61 (2008). https://doi.org/10.1038/nmat2080
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat2080
This article is cited by
-
Machine learning in scanning transmission electron microscopy
Nature Reviews Methods Primers (2022)
-
Ferroelectric order in van der Waals layered materials
Nature Reviews Materials (2022)
-
Ferroelectric incommensurate spin crystals
Nature (2022)
-
AtomAI framework for deep learning analysis of image and spectroscopy data in electron and scanning probe microscopy
Nature Machine Intelligence (2022)
-
DMPFIT: A Tool for Atomic-Scale Metrology via Nonlinear Least-Squares Fitting of Peaks in Atomic-Resolution TEM Images
Nanomanufacturing and Metrology (2022)