Spatially resolved electronic and vibronic properties of single diamondoid molecules

Abstract

Diamondoids are a unique form of carbon nanostructure best described as hydrogen-terminated diamond molecules1. Their diamond-cage structures and tetrahedral s p3 hybrid bonding create new possibilities for tuning electronic bandgaps, optical properties, thermal transport and mechanical strength at the nanoscale1,2. The recently discovered higher diamondoids3,4 have thus generated much excitement in regards to their potential versatility as nanoscale devices5,6,7,8,9,10,11,12,13,14,15. Despite this excitement, however, very little is known about the properties of isolated diamondoids on metal surfaces, a very relevant system for molecular electronics. For example, it is unclear how the microscopic characteristics of molecular orbitals and local electron–vibrational coupling affect electron conduction, emission and energy transfer in the diamondoids. Here, we report the first single-molecule study of tetramantane diamondoids on Au(111) using scanning tunnelling microscopy and spectroscopy. We find that the diamondoid electronic structure and electron–vibrational coupling exhibit unique and unexpected spatial correlations characterized by pronounced nodal structure across the molecular surfaces. Ab initio pseudopotential density functional calculations reveal that much of the observed electronic and vibronic properties of diamondoids are determined by surface hydrogen terminations, a feature having important implications for designing future diamondoid-based molecular devices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: STM topography of tetramantane molecules.
Figure 2: STM images and DFT simulations of individual tetramantane molecules.
Figure 3: dI/dV spectroscopy of tetramantane molecules.
Figure 4: Spatial maps of the IETS intensity.

References

  1. 1

    Marchand, A. P. Diamondoid hydrocarbons—delving into nature’s bounty. Science 299, 52–53 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Raty, J. Y. & Galli, G. Ultradispersity of diamond at the nanoscale. Nature Mater. 2, 792–795 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Dahl, J. E., Liu, S. G. & Carlson, R. M. K. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299, 96–99 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Dahl, J. E. et al. Isolation and structural proof of the large diamond molecule, cyclohexamantane (C26H30). Angew. Chem. Int. Edn 42, 2040–2044 (2003).

    CAS  Article  Google Scholar 

  5. 5

    McIntosh, G. C., Yoon, M., Berber, S. & Tomanek, D. Diamond fragments as building blocks of functional nanostructures. Phys. Rev. B 70, 045401 (2004).

    Article  Google Scholar 

  6. 6

    Drummond, N. D., Williamson, A. J., Needs, R. J. & Galli, G. Electron emission from diamondoids: A diffusion quantum Monte Carlo study. Phys. Rev. Lett. 95, 096801 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Lu, A. J., Pan, B. C. & Han, J. G. Electronic and vibrational properties of diamondlike hydrocarbons. Phys. Rev. B 72, 035447 (2005).

    Article  Google Scholar 

  8. 8

    Richardson, S. L., Baruah, T., Mehl, M. J. & Pederson, M. R. Theoretical confirmation of the experimental Raman spectra of the lower-order diamondoid molecule: Cyclohexamantane (C26H30). Chem. Phys. Lett. 403, 83–88 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Willey, T. M. et al. Molecular limits to the quantum confinement model in diamond clusters. Phys. Rev. Lett. 95, 113401 (2005).

    CAS  Article  Google Scholar 

  10. 10

    Filik, J. et al. Raman spectroscopy of nanocrystalline diamond: An ab initio approach. Phys. Rev. B 74, 035423 (2006).

    Article  Google Scholar 

  11. 11

    Fokin, A. A. et al. Reactivity of [1(2,3)4]pentamantane (T-d-pentamantane): A nanoscale model of diamond. J. Org. Chem. 71, 8532–8540 (2006).

    CAS  Article  Google Scholar 

  12. 12

    Oomens, J. et al. Infrared spectroscopic investigation of higher diamondoids. J. Mol. Spectrosc. 238, 158–167 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Schreiner, P. R. et al. Functionalized nanodiamonds: Triamantane and [121]tetramantane. J. Org. Chem. 71, 6709–6720 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Willey, T. M. et al. Observation of quantum confinement in the occupied states of diamond clusters. Phys. Rev. B 74, 205432 (2006).

    Article  Google Scholar 

  15. 15

    Yang, W. L. et al. Monochromatic electron photoemission from diamondoid monolayers. Science 316, 1460–1462 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunnelling microscope. Nature 344, 524–526 (1990).

    CAS  Article  Google Scholar 

  17. 17

    Stipe, B. C., Rezaei, M. A. & Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Ho, W. Single-molecule chemistry. J. Chem. Phys. 117, 11033–11061 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Kirtley, J. R., Washburn, S. & Scalapino, D. J. Origin of the linear tunneling conductance background. Phys. Rev. B 46, 336–346 (1992).

    Article  Google Scholar 

  20. 20

    Stipe, B. C., Rezaei, H. A. & Ho, W. Localization of inelastic tunneling and the determination of atomic-scale structure with chemical specificity. Phys. Rev. Lett. 82, 1724–1727 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Hahn, J. R., Lee, H. J. & Ho, W. Electronic resonance and symmetry in single-molecule inelastic electron tunneling. Phys. Rev. Lett. 85, 1914–1917 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Grobis, M. et al. Spatially dependent inelastic tunneling in a single metallofullerene. Phys. Rev. Lett. 94, 136802 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Lorente, N. & Persson, M. Theory of single molecule vibrational spectroscopy and microscopy. Phys. Rev. Lett. 85, 2997–3000 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Ihm, J., Zunger, A. & Cohen, M. L. Momentum-space formalism for the total energy of solids. J. Phys. C 12, 4409–4422 (1979).

    CAS  Article  Google Scholar 

  25. 25

    Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Hybertsen, M. S. & Louie, S. G. Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986).

    CAS  Article  Google Scholar 

  27. 27

    Jorgensen, W. L. & Salem, L. The Organic Chemist’s Book of Orbitals (Academic, New York, 1973).

    Google Scholar 

  28. 28

    Perdew, J. P. & Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981).

    CAS  Article  Google Scholar 

  29. 29

    Troullier, N. & Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF Grant Nos. DMR04-39768, EEC-0425914, COINS, UC Discovery grant ELE 05-10234, and the US Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at the National Energy Research Scientific Computing Center. Y.W. thanks the Miller Institute for a research fellowship. E.K. is a fellow of the Onassis Foundation. D.W. acknowledges support by the Alexander von Humboldt Foundation.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yayu Wang or Michael F. Crommie.

Supplementary information

Supplementary Information

Supplementary information and supplementary figure 1 (PDF 115 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y., Kioupakis, E., Lu, X. et al. Spatially resolved electronic and vibronic properties of single diamondoid molecules. Nature Mater 7, 38–42 (2008). https://doi.org/10.1038/nmat2066

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing